• Title/Summary/Keyword: forward flow

Search Result 503, Processing Time 0.023 seconds

Hybrid Fuzzy PI-Control Scheme for Quasi Multi-Pulse Interline Power Flow Controllers Including the P-Q Decoupling Feature

  • Vural, Ahmet Mete;Bayindir, Kamil Cagatay
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.787-799
    • /
    • 2012
  • Real and reactive power flows on a transmission line interact inherently. This situation degrades power flow controller performance when independent real and reactive power flow regulation is required. In this study, a quasi multi-pulse interline power flow controller (IPFC), consisting of eight six-pulse voltage source converters (VSC) switched at the fundamental frequency is proposed to control real and reactive power flows dynamically on a transmission line in response to a sequence of set-point changes formed by unit-step reference values. It is shown that the proposed hybrid fuzzy-PI commanded IPFC shows better decoupling performance than the parameter optimized PI controllers with analytically calculated feed-forward gains for decoupling. Comparative simulation studies are carried out on a 4-machine 4-bus test power system through a number of case studies. While only the fuzzy inference of the proposed control scheme has been modeled in MATLAB, the power system, converter power circuit, control and calculation blocks have been simulated in PSCAD/EMTDC by interfacing these two packages on-line.

Digital Microflow Controllers Using Fluidic Digital-to-Analog Converters with Binary-Weighted Flow Resistor Network (이진가중형 유체 디지털-아날로그 변환기를 이용한 고정도 미소유량 조절기)

  • Yoon, Sang-Hee;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1923-1930
    • /
    • 2004
  • This paper presents digital microflow controllers(DMFC), where a fluidic digital-to-analog converter(DAC) is used to achieve high-linearity, fine-level flow control for applications to precision biomedical dosing systems. The fluidic DAC, composed of binary-weighted flow resistance, controls the flow-rate based on the ratio of the flow resistance to achieve high-precision flow-rate control. The binary-weighted flow resistance has been specified by a serial or a parallel connection of an identical flow resistor to improve the linearity of the flow-rate control, thereby making the flow-resistance ratio insensitive to the size uncertainty in flow resistors due to micromachining errors. We have designed and fabricated three different types of 4-digit DMFC: Prototype S and P are composed of the serial and the parallel combinations of an identical flow resistor, while Prototype V is based on the width-varied flow resistors. In the experimental study, we perform a static test for DMFC at the forward and backward flow conditions as well as a dynamic tests at pulsating flow conditions. The fabricated DMFC shows the nonlinearity of 5.0% and the flow-rate levels of 16(2$^{N}$) for the digital control of 4(N) valves. Among the 4-digit DMFC fabricated with micromachining errors, Prototypes S and P show 27.2% and 27.6% of the flow-rate deviation measured from Prototype V, respectively; thus verifying that Prototypes S and P are less sensitive to the micromachining error than Prototype V.V.

A Study of the Plastic Deformation in Axisymmetric Combined Extrusion (축대칭 복합압출공정의 소성변형 연구)

  • 한철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2005-2015
    • /
    • 1994
  • An analytical method based on the upper bound approach for the cup-bar axisymmetric combined extrusion is presented to determine the deformation zones as well as extrusion load and deformed geometry in the early stage. A new kiematically admissible velocity field is derived by the appropriate transformation of the original velocity field and applying the flow function approach. The derived velocity field is directly related to the boundary function for the plastically deforming zones and the parameter controlling the flow direction to the forward part or backward part. Experiments are carred out with the annealed aluminum 2024 at room temperature for the various area reductions. The workhardening effect is considered in the formulation as a function of the height ratio between the deformed billet and the orighinal billet to calculate the extrusion pressures. The theoretical predictions for the extrusion loads and deformed configuration are in good agreement with the experimental results.

The fabrication of a micro pump with a flap valve and a phase change actuator (알루미늄 플랩 밸브와 상변화 구동 마이크로 펌프의 제작)

  • Lee, Sang-Woo;Sim, Woo-Young;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1023-1025
    • /
    • 1998
  • This paper presents the fabrication of a micro pump consisting of a pair of Al f1ap wave and a phase change actuator. The phase change actuator is composed of a heater, a silicone rubber diaphragm and a working liquid chamber. The diaphragm is actuated by the evaporation and the condensation of the working liquid. The actuator pumps fluid through the valves. The micro pump is fabricated by the anisotropic etch, the boron deposition and the metal evaporation. The forward and the backward flow characteristics of the f1ap valves were obtained. Also, the flow rate of the micro pump has been measured. When the square wave input of 12 V, 60% duty ratio and 0.2 Hz is applied, the average flow rate is $0.15{\mu}{\ell}/sec$ for zero pressure difference.

  • PDF

Unsteady Flow Simulation of the Smart UAV Proprotor (스마트무인기 프롭로터 비정상 유동해석)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.415-421
    • /
    • 2006
  • The unsteady flow calculation around the proprotor of Smart UAV was conducted. Using the flight scenario of SUAV which composed of hover, transition, and airplane mode, the aerodynamic analysis of proprotor were performed for the variation of collective pitch, rpm, forward speed, and tilt angle. The unsteady compressible Navier-Stokes equations were used for the calculation and the dynamic overset grid technique was applied for the rotating proprotor. The aerodynamic performance of proprotor calculated in this way were validated by comparing with the performance data obtained from the blade element momentum method.

  • PDF

A Study on Turbulent Flow Fields around Ships (선체주위 난류유동장의 해석에 관한 연구)

  • Park J. J.;Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.148-153
    • /
    • 1995
  • Three dimensional turbulent flow fields around ships are simulated by a numerical method. Reynolds Averaged Navier-Stokes equations are used where Reynolds stresses are approximated by Baldwin-Lomax and Sub-Grid Scale(SGS) turbulence models. Body-fitted coordinate system is introduced to conform three dimensional ship geometries. The governing equations are discretized by a finite volume method. Temporal derivatives are approximated by the forward differencing and the convection terms are approximated by the QUICK or Kawamura scheme. The 2nd-order centered differencing is used for other spatial derivatives. Pressure and velocity fields are simultaneously iterated by the Highly Simplified Marker-And-Cell method. To verity the numerical method and turbulence models, flow fields around ships are simulated and compared to the experiments.

  • PDF

A Numerical Analysis on Flow Fields and Calculation of Pressure Resistance about an Air Supported Ship (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.43-48
    • /
    • 1995
  • A numerical computation is carried out to analyse characteristics of flow fields around Air Supported Ships having arbitrary form. The computations are performed in a rectangular grid system with MAC(Marker And Cell) method. The governing equations are represented in a Finite Difference form by forward differencing in time and centered differencing in space except for convection terms. For validation of this numerical analysis method, the computation of flow fields around Catamaran and ACV(Air Cushion Vehicle) with pressure distribution on free surface are done, and that around Surface Effect Ship is also carried out. The results of the computations are compared with the those of existed numerical computation and experimental results with the same condition.

  • PDF

Comparison of Time Implicit Symmetric Gauss-Seidel Iterative Schemes for Computation of Hypersonic Nonequilibrium Flow

  • Lee, Chang Ho;Park, Seung O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The time implicit point SGS scheme is applied to compute hypersonic viscous flows in thermochemical nonequilibrium. The performance of the point SGS scheme is then compared with those of the line SGS and the LU-SGS schemes. Comparison of convergence histories with the effect of multiple forward and backward sweeps are made for the flow over a 2D cylinder experimentally studied by Hornung and the flow over a hemisphere at conditions corresponding to the peak heating condition during the reentry flight of an SSTO vehicle. Results indicate that the point SGS scheme with multiple sweeps is as robust and efficient as the line SGS scheme. For the point SGS and the LU-SGS scheme, the rate of improvement in convergence is largest with two sweep cycles. However, for the line SGS scheme, it is found that more than one sweep cycle deteriorates the convergence rate.

  • PDF

Flow cytometry As a Tool for Monitoring Immune Parameters of the Manila clam Ruditapes philippinarum

  • Park, Kyung-Il;Philippe Soudant;Park, Kwang-Sik
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.369-369
    • /
    • 2003
  • Hemocytes in marine bivalves play important immunological roles in discrimination, opsonization and phagocytosis of foreign materials as a defense mechanism. In this study we report the flow cytometric implications to investigate the immune parameters such as the compositional and the functional characteristics of hemocytes isolated from the Manila clams, Ruditapes philippinarum. Heterogeneity of the hemocytic cell population was determined by the forward scatter (FSC) and side scatter (SSC) cytometric profile which showed three populations: granulocytes, hyalinocytes and small agranular cells. In addition, phagocytosis rate was measured after adding fluorescent-labeled particles. The data were initially analysed for two-parameters: FSC and SSC, then the fluorescent (FL 1) frequency distribution histogram of the hemocyte population was subsequently obtained.

  • PDF

A Study on the Forming Characteristics of Radial Extrusions (레이디얼압출의 성형특성에 관한 연구)

  • 이수형;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF