• Title/Summary/Keyword: formulation design

Search Result 975, Processing Time 0.025 seconds

Aerodynamic Shape Optimization Using a Continuous Adjoint Formulation on Unstructured Meshes (비정렬 격자계에서 Continuous Adjoint 방정식을 이용한 공력 형상 최적 설계)

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.18-27
    • /
    • 2002
  • Aerodynamic shape optimization of two-dimensional airfoils in inviscid compressible flows is performed using a continuous adjoint formulation on unstructured meshes. Accurate evaluation of the gradient is achieved by using a reconstruction scheme based on the Laplacian averaging. A least-square method with extended stencil is used for flow gradient calculations. Proper convergence criterion is studied on Euler and adjoint equations for efficient design. The present method has been applied to RAE2822 and NACA0012 airfoils such that wave drag can be minimized by removing the shock wave. An inverse design is also performed to recover the shock wave on the designed RAE2822 airfoil.

Topology Optimization of Poroelastic Acoustic Foams for Absorption Coefficient Maximization (위상최적설계를 이용한 다공성 물질의 형상 최적화)

  • Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June;Lee, Joong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.934-937
    • /
    • 2006
  • This investigation presents a topology formulation to design optimal poroelastic acoustic foams to maximize absorbing ability. For successful formulation, a single set of equations based on Biot's theory is adopted and an appropriate material interpolation strategy is newly developed. Because there was no earlier attempt to solve poroelastic acoustic foam design problems in topology optimization setting, many challenging issues including modeling and interpolation must be addressed. First, the simulation accuracy by a proposed unified model encompassing acoustic air and poroelastic material was checked against analytical and numerical results. Then a material interpolation scheme yielding a distinct acoustic air-poroelastic material distribution was developed. Using the proposed model and interpolation scheme, the topology optimization of a two-dimensional poroelastic acoustic foam for maximizing its absorption coefficient was carried out. Numerical results show that the absorption capacity of an optimized foam layout considerably increases in comparison with a nominal foam layout.

  • PDF

Guidance & Control System Design based on Optimization (최적화 기반 유도제어시스템 설계)

  • Moon, Gwan-Young;Jun, Byung-Eul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.52-58
    • /
    • 2011
  • The missile control system is comprised of various control systems such as autopilot, guidance law, and homing filter and so on. To design these guidance and control system, the optimization technique is widely applied at each developing stage. However, this kind of optimization requires lots of time and cost and moreover, this approach does not give an overall system optimization result. In this paper, to use the optimization tool for control system design, the optimal problem formulation is done and the performance index and constraints are considered. And finally the systematically optimized method is proposed.

Development of Uncertainty-Based Life-Cycle Cost System for Railroad Bridges (불확실성을 고려한 철도 교량의 LCC분석 시스템 개발)

  • Cho, Choong-Yuen;Sun, Jong-Wan;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1158-1164
    • /
    • 2007
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedentedly in civil engineering practice. Accordingly, it is expected that the life-cycle cost in the 21st century will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, so far, most researches in Koreahave only focused on roadway bridges, which are not applicable to railway bridges. Thus, this paper presents the formulation models and methods for uncertainty-based LCCA for railroad bridges consideringboth objective statistical data available in the agency database of railroad bridges management and subjective data obtained form interviews with experts of the railway agency, which are used to anew uncertainty-based expected maintenance/repair costs including lifetime indirect costs. For reliable assessment of the life-cycle maintenance/repair costs, statistical analysis considering maintenance history data and survey data including the subjective judgments of railway experts on maintenance/management of railroad bridges, are performed to categorize critical maintenance items and associated expected costs and uncertainty-based deterioration models are developed. Finally, the formulation for simulation-based LCC analysis of railway bridges with uncertainty-based deterioration models are applied to the design-decision problem, which is to select an optimal bridge type having minimum Life-Cycle cost among various railway bridges types such as steel plate girder bridge, and prestressed concrete girder bridge in the basic design phase.

  • PDF

The Design of an Optimal Demand Response Controller Under Real Time Electricity Pricing

  • Jin, Young Gyu;Choi, Tae-Seop;Park, Sung Chan;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.436-445
    • /
    • 2013
  • The use of a demand response controller is necessary for electric devices to effectively respond to time varying price signals and to achieve the benefits of cost reduction. This paper describes a new formulation with the form of constrained optimization for designing an optimal demand response controller. It is demonstrated that constrained optimization is a better approach for the demand response controller, in terms of the ambiguity of device operation and the practicality of implementation of the optimal control law. This paper also proposes a design scheme to construct a demand response controller that is useful when a system controller is already adapted or optimized for the system. The design separates the demand response function from the original system control function while leaving the system control law unchanged. The proposed formulation is simulated and compared to the system with simple dynamics. The effects of the constraints, the system characteristics and the electricity price are examined further.

Analysis of Dynamic Characteristics for a Free-Piston Vuilleumier Heat Pump Based on the Isothermal Model (등온모델에 의한 자유행정 Vuilleumier열펌프의 동특성 해석)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.467-478
    • /
    • 1994
  • This paper deals with dynamic behaviors of a free-piston Vuilleumier heat pump system, which are characterized by stroke of each diplacer/stroke ratio, operating frequency and phase angle. Based on the Isothermal Model, basic equations of motion are derived and linearized. In particular, dependence of damping coefficients of the dynamic parameters are taken into account in the formulation, which does not bring additional difficulties in the analysis. In order to investigate effects of design conditions on the dynamic parameters are taken into account in the formulation, which does not bring additional difficulties in the analysis. In order to investigate effects of design conditions on the dynamic characteristics, calculations are performed for the prototype made by Schulz and Thomas and results are qualitatively compared with their data obtained from the analysis as well as the experiment. It appears that they made a mistake in evaluating the hysteresis loss of the gas spring in their analysis. And, the present results show a better agreement with their experimental data than those by their own analysis. Although there are some unresolved aspects such as frequency variations with respect to the mean pressure and the hot space temperature, it is expected that the present analysis may be an effective tool for prediction of dynamics of a free- pistion VM machine at the preliminary design stage.

Multiscale finite element method applied to detached-eddy simulation for computational wind engineering

  • Zhang, Yue;Khurram, Rooh A.;Habashi, Wagdi G.
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.1-19
    • /
    • 2013
  • A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse (resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms appear naturally and the resulting formulation provides effective stabilization in turbulent computations, where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric boundary layer flows.

Bayesian Estimation in Bioequivalence Study

  • Lee, Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1095-1102
    • /
    • 2011
  • The classical two-period, two-sequence crossover design is no longer sufficient to assess various demands in a bioequivalence study. For instance, to estimate the within-subject and between-subject variances of test and reference formulations separately, it is necessary to use a replicate design in which each subject receives at least the reference formulation in two periods. Several designs were studied to satisfy the demands. It is provided a unified Bayesian approach applicable to those study designs. The benefit of the method in the bioequivalence study is discussed.

Design of Cylindrical Composite Shell for Optimal Dimensions (최적 단면 치수를 가지는 복합재료 중공 빔의 설계)

  • 최용진;전흥재;박혁성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.127-133
    • /
    • 2003
  • In this study, a problem formulation and solution for design optimization of laminate composite cylindrical beam section is presented. The objective of this research is to determine the optimal dimension of the laminated composite cylindrical beam sections which has the equivalent flexural rigidities to those of the steel cylindrical beam sections. The analytical model is based on the laminate theory and accounts for the material coupling for arbitrary laminate stacking sequence configuration. The outer diameter and thickness of the beam are design variables. The solutions described are found using a global search algorithm, Genetic Algorithms (GA).

  • PDF

LQ-PID Controller Tuning for a Second-Order System with Time-Delay (시간지연을 갖는 2차 시스템의 LQ-PID제어기 동조)

  • Park, Taek-Seon;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents an optimal robust LQ-PID controller design method for a second order system with time-delay to meet design specifications. By LQR formulation of the second order system with time-delay, tuning parameters of PID controller are related by the weighting factors Q and R of cost function. The selection of the weighting factors Q and R are chosen to satisfy such the design specifications as overshoot and settling time.

  • PDF