• Title/Summary/Keyword: formed coke

Search Result 21, Processing Time 0.022 seconds

Porosity and Electrical Resistivity of Formed Cokes Made from Anthracite and Phenolic resin (무연탄(無煙炭)과 페놀수지(樹脂)로부터 제조(製造)된 성형(成形)코크스의 기공율(氣孔率)과 전기저항율(電氣抵抗率))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2008
  • In this study, the porosity and electrical resistivity of the formed coke produced by sintering the mixture of domestic anthracite and phenolic resin were mainly investigated, when the effect of the amount of binder, the hydration temperature and time, the hardening temperature and time, sintering temperature and time, the particle size of anthracite, the grade of anthracite, and the mixing ratio of phenolic resin on the physical properties of the coke were studied. As a result, It was found that the electrical resistivity and porosity of the formed coke are varied in the range of $0.3\sim1.2\Omega{\cdot}cm$ of $10\sim30%$, respectively, in accordance with the variation of factors.

Effect of the imported bituminous coal and the domestic anthracite coal mixed with petroleum coke (석유코크스와 혼합된 국내무연탄과 수입유연탄 슬래그의 특성 규명)

  • Kim, Min-Kyung;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.230-233
    • /
    • 2008
  • The vanadium rich ash of petroleum coke can give a slagging problem during because of the high melting point of $V_2O_3$. For continuous removal of the slag, petroleum coke is often mixed with coal, and the viscosity of the mixed slag is an important property, determining the gasification temperature. The viscosities of the mixed slag from various mixing ratios of petroleum coke and a bituminous coal were investigated. When mixed with a crystalline coal slag, $T_{cv}$ was increased at a higher the coke content in the mixed feed. When the $V_2O_3$ concentration was greater than 4.5%, it was difficult to get accurate measurements of $T_{cv}$. The SEM/EDX analyses of the cooled slag revealed that the major crystalline phase was anorthite, and $T_{cv}$ should be related to the formation temperature of anorthite. The SEM/EDX analyses also showed that, at low concentrations of vanadium, part vanadium formed a crystalline phase with Al-Si-Ca-Fe, and the rest remained in the glassy phase, suggesting that vanadium existed as a slag component at the low viscosity region. At a high concentration, vanadium forms a phase with Ca, and the Ca-V phase was separated from the slag phase, and formed a layer above the slag. FeO in petroleum coke also played an important role determining viscosity: at high temperatures, increased FeO lowered the viscosity, but as it formed a spinel phase, the depletion of FeO in the slag resulted in a higher viscosity.

  • PDF

New insights about coke deposition in methanol-to-DME reaction over MOR-, MFI- and FER-type zeolites

  • Migliori, Massimo;Catizzone, Enrico;Aloise, Alfredo;Bonura, Giuseppe;Gomez-Hortiguela, Luis;Frusteri, Leone;Cannilla, Catia;Frusteri, Francesco;Giordano, Girolamo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.196-208
    • /
    • 2018
  • The effect of channel-system of zeolite on methanol-to-DME reaction was studied. Results revealed that channels size and topology affect catalyst lifetime, type and location of coke precursors. FER and MFI showed the best resistance towards coke deposition, whilst fast deactivation was observed on MOR. Although the higher concentration and strength of acid sites, FER structure formed a lower coke amount, preferably located within the pores, while coke cluster deposited on the external surface of MOR. Analysis of acid sites distribution and strength was performed during deactivation-regeneration process. Coke location assessment was also supported by molecular simulations.

A Study on Reaction Products between Cokes and Kaolinites (국산 cokes를 이용한 고급복합내화재료개발에 관한 연구)

  • 이희수;박정현;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.1
    • /
    • pp.28-34
    • /
    • 1978
  • In order to develop the high refractory composite materials consisting of mullite and carborundum, Hadong kaolin and coal coke were selected as the starting materials. Silicone carbide crystals formed during the high-temperature reaction between kaolin and coke were detected by X-ray diffraction method and identified by electron diffraction. The temperature at which the amorphous silicone carbide begins to crystallize could be assumed to be about 155$0^{\circ}C$, which is the lower temperature claimed by others.

  • PDF

The influence of factors on the strength of formed coke made with anthracite and phenolic resin (무연탄(無煙炭)과 페놀수지(樹脂)의 혼합(混合)소성에 의해 제조(製造)된 함형(咸形)코크스의 강도(强度))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.57-61
    • /
    • 2008
  • The aim of this study is to produce the coke which can be used for the production of ferroalloy, by mixing phenolic resin and anthracite and sintering it. The influence of factors on the strength of coke were investigated. The results of this study are as follows: It is found that the anthracite coke of $100{\sim}150\;kgf/cm^2$ strength for ferroalloy can be made by a series of process as follows; Mixing homogeneously 6% liquefied phenolic resin and 6% water with $35{\sim}325$ mesh anthracite of low ash content. Making pellet by press the mixture in $10-50\;kgf/cm^2$ pressure. Dehydrating the pellet for 6 hrs at $50^{\circ}C$, and hardening it for 180 min at $200^{\circ}C$. Sinter the mixture for 6 hrs at $1,200^{\circ}C$.

Environmental Conditions in the Reheating Furnace for High Quality Advanced High Strength Steels for Automobiles

  • Sohn, Il-Ryoung;Chin, Kwang-Geun
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.193-197
    • /
    • 2007
  • It is well known that the development of Advanced High Strength Steels (AHSS) is very important for the automotive industry in order to improve fuel efficiency and the reduction of material costs. However, it is particularly difficult to improve the surface quality of AHSS because the high amount of Si, Al, Mn and Ti etc. in AHSS promote selective oxidation, resulting in surface defects. The reheating process in the hot strip mill would cause severe oxidation because it is carried out at elevated temperatures under aggressive environments. In this study a reheating furnace simulator was developed to investigate oxidation phenomena in the reheating process. The environmental gas for the reheating furnace was made by burning coke oven gas with air in the simulator. The air/fuel ratio is precisely controlled by MFC. Ti oxides are easily formed on grain boundaries and Mn and Si oxides are usually formed in inner grains near the steel surface with a small round shape.

Preparation of Isotropic Carbon with High Density (고밀도, 등방성 탄소의 제조에 관한 연구)

  • 오종기;이선우;박광원
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.908-916
    • /
    • 1991
  • The characteristics of the carbonized and calcined products made from coal tar pitch coke and coal tar pitch, were investigated in the aspect of the manufacture of isotropic graphite with high density. The mesophase from the pitch was rapidly formed at higher heat-treatment temperature between 410$^{\circ}C$ and 450$^{\circ}C$, where the insolubes in the pitch accelerated the rate of nucleation and growth of the mesophase. The benzene insolubles and the quinoline insolubes were increased as the heat treatment temperature and the heat-treatment time increased. The ratio of benzene insolubles and quinoline solubles (BI/QS) was decreased as the heat-treatment temperature was higher and maintained to be nearly constant regardless of heat-treatment time at fixed heat treatment temperature. The bulk density of the calcined carbon was linearly proportional to the ratio of quinoline solubes to volatile matter in the green coke. Anisotropic ratio of electrical resistance was measured to be between 0.98 and 1.10.

  • PDF

Application of Intra-particle Combustion Model for Iron Ore Sintering Bed (제철 소결공정에 대한 단입자 연소 모델의 응용)

  • Yang, Won;Choi, Sang-Min;Jin, Hong-Jong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.181-188
    • /
    • 2006
  • Operation parameters for large scale industrial facility such as iron making plant are carefully selected through elaborate tests and monitoring rather than through a mathematical modeling. One of the recent progresses for better energy utilization in iron ore sintering process is the distribution pattern of fuel inside a macro particle which is formed with fines of iron ore, coke and limestone. Results of model tests which have been used as a basis for the improved operation in the field are introduced and a theoretical modeling study is presented to supplement the experiment-based approach with fundamental arguments of physical modeling, which enables predictive computation beyond the limited region of tests and adjustment. A single fuel particle model along with one-dimensional bed combustion model of solid particles are utilized, and thermal processes of combustion and heat transfer are found to be dominant consideration in the discussions of productivity and energy utilization in the sintering process.

  • PDF

A study on the formation of oxide scale on the stainless steels at high temperature (스테인레스강의 스케일 형성에 관한 연구)

  • Son, I.R.;Kim, G.M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.123-133
    • /
    • 1994
  • Oxidation behavior of STS 304 and 430, produced by POSCO, Korea, was studied in order to study the surface defects formed during manufacturing processes. Oxidation experiments were carried out in a preheat-ed furnace at 850~$1, 250^{\circ}C$ in air and in a simulated coke oven gas(COG) atmosphere. The reaction products were examined by XRD, SEM and EDX on their surfaces and cross sections. Protective $Cr_2O_3$-primary oxide film was formed initially, but at critical point this film was broken and a duplex scale consisting of $Fe_2O_3$- and Fe$Cr_2O_4$- was formed. It was more severely attacked in a simulated COG atmosphere than in air, and STS 304 was superior to STS 430 in oxidation resistance.

  • PDF

Changes of Microstructure and Properties of Manufactured Modified Pitches via Pressure Changes during Heat Treatments in Coal Tar Pitch (석탄계 타르의 열처리 중 압력변화에 따른 변성 콜타르 핏치의 미세구조 및 물성 변화)

  • Ko, Hyo Joon;Chung, Sung Mo;Han, Ji Hoon;Park, Chang Uk;Kim, Myung-Soo;Lim, Yun-Soo
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.293-300
    • /
    • 2014
  • Coal-tar pitch, a feedstock which can be heat-treated to create graphite, is composed of very complex molecules. Coal-tar pitch is a precursor of many useful carbon materials (e.g., graphite, carbon fibers, electrodes and matrices of carbon/carbon composites). Modified coal-tar pitch (MCTP) was prepared using two different heat-treatment methods and their properties were characterized and compared. One was prepared using heat treatment in nitrogen gas; the other was prepared under a pressure of 350 mmHg in air. The MCTPs were investigated to determine several properties, including softening point, C/H ratio, coke yield, formation of anisotropic mesophase and viscosity. The MCTPs were subject to considerable changes in chemical composition due to condensation and polymerization in the used-as-received coal-tar pitch after heat-treatment under different conditions. The MCTPs showed considerable increases in softening point, C/H ratio, and coke yield, compared to those of as-received coal-tar pitch. The MCTP formed by heat-treatment in nitrogen showed isotropic phases below $350^{\circ}C$ for 1 h of soaking time. However, MCTP heat-treated under high pressure (350 mmHg) showed isotropic phases below $300^{\circ}C$, and showed anisotropic phases above $350^{\circ}C$, for 1 h of soaking time. The viscosity of the MCTPs increased with increase in their softening points.