• Title/Summary/Keyword: forest stream

Search Result 395, Processing Time 0.026 seconds

Differences in Biogeochemical Properties and Microbial Activities in Stream Segments with Changes in Land-use Type

  • Kim, Jinhyun;Jang, Inyoung;Lee, Hyunjin;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2015
  • Changes in land-use type can affect soil and water properties in stream ecosystems. This study examined the effects of different land-use types on biogeochemical properties and microbial activities of a stream. We collected water and sediment samples in a stream at three different sites surrounded by varying land-use types; a forest, a radish field and a rice paddy. Nitrogen contents, such as nitrate, nitrite and total nitrogen in the stream water body, showed significant differences among the sampling sites. The highest nitrogen values were recorded at the site surrounded by cropland, as fertilizer runoff impacted the stream. Soil organic matter content in the sediment showed significant differences among sites, with the highest content exhibited at the forest mouth site. These differences might be due to the organic matter in surrounding terrestrial ecosystems. Microbial activities determined by extracellular enzyme activities showed similar values throughout all sites in the water body; however, the activities in the sediments exhibited the highest values near the forest site and mirrored the soil organic matter content values. From these results, we conclude that different land-use types are important factors affecting water and sediment properties in stream ecosystems.

The Effect of Stream Anion and River-Bed Materialson Aquatic Insects (계류수의 음이온과 하상재료가 수서곤충에 미치는 영향)

  • Seo, Mun Won;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.89-97
    • /
    • 1999
  • This study was carried out to obtain basic data on the kinds of aquatic insects and their living conditions in the mountain stream. The investigation was done in Bongmyung stream. Experimental Forest, Kangwon National University on aquatic insects, anions and river-bed materials. The results are as follows. 1. At every plot surveyed, diversity index, richness index and evenness index of aquatic insects appeared higher at upper stream than at lower stream in erosion control dam. 2. Anion concentrations were almost the same in plots A, B, C, D and E, but plot F at the lower stream showed 1.5 to 89 times higher concentration than the others. 3. In river-bed materials analysed, particle diameter was bigger at the upper stream than at the lower stream. At the down stream of erosion control dam showed high pebble composition ratio. 4. The number of aquatic insects showed the negative relation with the anion concentration and the positive one with the size of river-bed materials. Especially, they were affected much by the distribution chart of boulder.

  • PDF

Strategy Prospects of Environmental Restoration of Stream Side in Japan - With a Special Reference to the Forest Road, Forest Conservation and Erosion Control - (일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略) II - 임도(林道) 및 치산(治山)·사방(砂防)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Kwon, Tae-Ho;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.66-74
    • /
    • 2000
  • This study was carried out to introduce current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. The strategy prospects of environmental restoration in Japan were summarized as follows: 1. We should establish a new paradigm of forest road, forest conservation and erosion control which can emphasize the restoration of the streamside ecosystem and reduce the effects of soil movement change in the areas. And we should maintain the biotic habitats to conserve native biotic community when we practice forest road, forest conservation and erosion control works. 2. In the point of view ecological conservation aspects, we should evaluate the effects of new forest conservation and erosion control methods which is emphasized on the restoration of the streamside ecosystem to apply desirable methodology to the environmental restoration of the streamside area. 3. In the past, the objective of forest conservation and erosion control was to fix a soil by construction of permanent structures. Whereas, the direction of future's forest conservation and erosion control needs to change new forest conservation and erosion control technology to prevent large scale soil movement but allow small scale soil movement to conserve sound ecosystem and biotic habitats. 4. The restoration of the streamside ecosystem should provide continuity of the streamside environment which allows desirable biological habitats, and environmentally sound facilities to harmonize the environment.

  • PDF

Evaluation of the Applicability of Sediment Discharge Measurement in Mountain Stream using the Load-cell Sensor (Load-cell Sensor를 이용한 산지 토사유출량 계측의 현장 적용성 검토)

  • Seo, Jun-Pyo;Lee, Ki-Hwan;Kim, Dong-Yeob;Woo, Choong-Shik;Lee, Chang-Woo;Lee, Heon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.644-653
    • /
    • 2018
  • Landslides occur frequently due to the effects of heavy rainfall and typhoons caused by climate change. Erosion control measures are needed to effectively prevent landslide damage. In order to improve their efficiency, it is necessary to quantitatively measure the sediment discharge from the mountain stream. In this study, a load cell sensor was installed in a mountain stream and the measured values were compared according to the applicability and load test type in the mountain stream. The result of the load test showed that the effect of the loading type (load test 1, 2) was low at average (loadings) of 0.4kgf and 0.6kgf at sites 1 and 2, respectively. The load factor was also derived by regression analysis to increase the accuracy of the measured values. According to the results of the load factor (normalized) to the load-cell measurement value, the output value increased by 14.8% and 24.6% in sites 1 and 2, respectively, and was calculated to be similar to the reference value. The load cell sensor enabled us to quantitatively estimate the amount of sediment discharge in the mountain stream through time series analysis with the water level and rainfall information. If the monitoring is carried out for a long time, it can be used to find the sediment discharge mechanism for the mountain stream. In addition, applying sensors such as load-cells to a mountain stream is expected to contribute to the development of related industries, such as the manufacturing of measurement sensors.

On the Populus maximowiczii Forest of Sangcheon Ravine, Mt. Seolag (설악산 상천 계곡의 황철나무)

  • Yim, Yang-Jai
    • Journal of Plant Biology
    • /
    • v.27 no.2
    • /
    • pp.95-103
    • /
    • 1984
  • The Populus maximowiczii dominated forest of the Sangcheon ravine, Mt. Seolag, is distributed in the area with the conglemerates substrate, along the ravine stream from 170m to 550m in altitude. Toward the both slopes of the northern and southern peak from the stream side, the zonal distribution of vegetation was recognized; P. maximowiczii forest of Pinus densiflora forest and deciduous broad leaved forest. The pure community of P. maximowiczii with even more 80-98% in relative basal area (aspen basal area/basal area) was found in the ravine area from 360m to 420m in altitude, the optimal ranges in the species and community by two dimensional ordination with thermal and xeric cline axis. The species compete with Pinus densiflora, in the ravine stream side, and with deciduous broad leaved tree species such as Fraxinus rhynchophylla, Prunus sargentii, Lindera obtusiloba, in the mountain slope sides. On the other hand, the ravine vegetation, including the aspen forest, was classified into Pinus densiflora, Pinus densiflora-Carpinus laxiflora, Pinus densiflora-Populus maximowiczii, jessoensis, Acer mono-Fraxinus rhynchophylla, Carpinus laxiflora-Quercus mongolica, Quercus variabilis-Quercus ariena, Quercus ariena, Quercus variabilis-Stephanandra incisa, Picrasma quassioides-Celtis sinensis, Betula davurica-Zanthoxylum schinifolium and Styrax obassia-Lindera obtusiloba association.

  • PDF

Slope Stability Analysis of New Gabion Wall System with Vegetation Base Materials for Stream Bank Stability and Rehabilitation (계안 복원을 위한 식생기반재 돌망태 옹벽의 계안 안정효과 분석)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.130-137
    • /
    • 2012
  • This study has conducted to develop new gabion wall systems with vegetation base materials for stream bank stability and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Normally gabion wall systems resist the lateral earth pressures or stream power by their own weight. Therefore, fill material must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones are basically specified, and about 50-mm rubbles are also used. Test application of new gabion wall system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the analysis of hydraulic stability of new gabion wall system, gabion wall system has highest threshold shear stress when the gabion wall covered by vegetation. New gabion wall system is highly resistant to sliding and overturning because safety coefficients exceed 1.5. As a result of term of slope stability analysis of new gabion wall system by Bishop and Fellenius methods, stability of stream bank was highly increased after the construction of gabion wall. Therefore, new gabion wall system is effective to stabilize unstable stream bank.

Analysis of Forest Environmental Factors on Torrent Erosion control work area in Gyeongsangnam-do - Focus on Erosion Control Dam and Stream Conservation - (경남지역 야계사방사업지의 산림환경특성 분석 - 사방댐 및 계류보전사업을 중심으로 -)

  • Kang, Min-Jeng;Kim, Ki-Dae;Oh, Kang-San;Park, Jin-Won;Park, Jae-Hyeon
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.111-120
    • /
    • 2016
  • The objective of this study was to provide basic information for selecting the right timing and the right place of erosion control of stream on Gyeongsangnam-do. In order to achieve this objective, a total of 526 erosion control dams and 230 mountains stream conservation facilities on the constructed places and construction planned places for the erosion control were investigated on site, forest physiognomy, and hydrologic conditions. The erosion control dams and mountain stream conservation facilities were mostly constructed in the area, which has the sedimentary rock, 200-400m of altitude, a slope of 21~30°, and II of landslide hazard map. Among the forest environmental factors, it was only similar to the construction frequency in the areas that have small diameter class, III age class. Also, we investigated the hydrological environmental factors that determine the size and numbers of erosion control dam. The places constructed to the highest frequency were below 50ha in the area, 2.1~4.0km/㎢ of drainage density, longitudinal water system, 61~90mm of maximum precipitation per hour, and 201~300mm of day maximum precipitation. As the results, the sites and floodgate conditions between the constructed places and stream conservation facilities for the erosion control showed to be very similar. Therefore, these results indicate that the erosion control of the stream of the areas, which have the disruption of mountain peaks and the high erosion risk areas, should be used on both the erosion control dam and stream conservation facilities.

Origin and Storage of Large Woody Debris in a Third-order Mountain Stream Network, Gangwon-do, Korea (강원도 산지계류 내 유목의 기원과 현존량)

  • Kim, Suk Woo;Chun, Kun Woo;Seo, Jung Il;Lim, Young Hyup;Nam, Sooyoun;Jang, Su Jin;Kim, Yong Suk;Lee, Jae Uk
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.249-258
    • /
    • 2020
  • This study aims to provide reference material for effective forest management techniques at the catchment scale, based on the field investigation of large woody debris (LWD) in 11 streams within a third-order forest catchment in Gangwon Province, Korea. To achieve this aim, we analyzed the morphological features of LWD pieces, and the storage and distribution status of LWD by stream order throughout the entire investigation. As a result, a total of 1,207 individual pieces of LWD were categorized into three types as follows: (ⅰ) 1,142 pieces (95%) as only trunk and 65 pieces (5%) as a trunk with root wad, (ⅱ) 1,015 pieces (84%) as non-thinned and 192 pieces (16%) as the thinned, and (ⅲ) 1,050 pieces (87%) as conifer and 157 pieces (13%) as broadleaf. Additionally, in-stream LWD loads (㎥/ha) decreased with increasing stream order, yielding 105.4, 71.3, and 35.6 for first-, second-, and third-order streams, respectively. On the other hand, the ratio of LWD jams to the total LWD volume increased with increasing stream order, yielding 11%, 43%, and 49% for first-, second-, and third-order streams, respectively. Finally, a comparison of the in-stream LWD load with previous studies in several countries around the world indicated that in-stream LWD load was positively correlated with forest stand age even though the climate, topography, forest soil type, forest composition, stand growth rate, disturbance regime, and forest management practices were different. These results could contribute to understanding the significance of LWD as a by-product of forest ecosystems and an indicator of riparian forest disturbance. Based on this, we conclude that advanced forest management techniques, including treatment of thinning slash and stand density control of riparian forest by site location (hillslope and riparian zone, or stream order), should be established in the future, taking the forest ecosystem and the aquatic environment from headwater streams to low land rivers into consideration.

Two years Monitoring of Vegetation Change in Torrential Stream Restoration Site (황폐계류 복원지의 식생변화 단기 모니터링)

  • Lee, Heon-Ho;Lee, Ju-Hyoung;Park, Ki-Young;Jang, Ji-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.240-247
    • /
    • 2014
  • This study was conducted as a restoration research in a mountain stream of hydrologic cycle system, which is a type of microsites purposely changing vegetation. The status of vegetation in the three experimental sites, water purification site, small dammed pole site, and aquatic plant restoration site, and one control site within the area of the mountain forest stream were investigated in three different periods, namely before sites restoration, year of sites restoration, and year after sites restoration. After one year of restoration, number of vegetation was increased in the small dammed pool and control site respectively. Vegetation coverage ratio of Zizania latifolia was increased at the water purification area. The effects of habitats restoration appeared to be good a year after the restoration of the experimental sites, in terms of families and species composition of the introduced vegetation, and stream flow. Therefore, the results of the study strongly suggest that fairly effective ways to restore and reproduce degrading mountain hydroecological habitats are by way of forming pool sites and small dams in intermittent mountain streams and re-vegetating with selected plants.

A Study on Change of Wild Bird Habitat Characteristics According to Riparian Forest Construction in Yangjae Stream, Seoul (서울 양재천 하천 숲 조성에 의한 야생조류 서식특성 변화 연구)

  • Yun, Suk-Hwan;Han, Bong-Ho;Choi, Jin-Woo;Yun, Ho-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.97-110
    • /
    • 2018
  • The purpose of this study is to provide basic data and evidence for the habitat improvement of wild birds in urban stream by analyzing changes in habitat characteristics of wild birds by riparian forest construction in Yangjae stream in Seoul. In Gangnam-gu, the multi layered riparian forest consisting of landscape trees and shrubs was formed on the slope. In Seocho-gu, the vertical vegetation structure of woody and herbaceous wetland plants was good. In Gangnam-gu, the vegetation area of the slope increased and the vertical stratification structure affected the species diversity of the forest birds. The number of species and individuals of plovers, sandpipers and wagtails decreased due to the impact of bicycle roads and trails. The poor forests on the levee slope in Seocho-gu affected the habitat selection and migration of the forest birds. The willows and amur silver-grasses formed in the riverside have been developed into the riparian forest, thus stabilizing the habitat of water birds by blocking disturbances from the influence of the trails.