• Title/Summary/Keyword: forest fires

Search Result 254, Processing Time 0.023 seconds

Analysis of Forest Fires during Chosun Dynasty through Historical Literature Survey (역사문헌 고찰을 통한 조선시대 산불특성 분석)

  • Kim, Dong-Hyun;Kang, Young-Ho;Kim, Kwang-Il
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.8-21
    • /
    • 2011
  • This study surveyed historical records on outbreak and features of forest fires during Chosun Dynasty's 518 years in being and analyzed the Annals of the Chosun Dynasty; The Diaries of the Royal Secretariat, archives from Records of the Border Defense Council, The Compilation of Ministry Proposals, Posthumous Records of King Cholchong etc. Forest fires were most prevalent and extreme during King Hyunjong (14 cases) and King Sunjo (13 cases) due to strong wind, and the biggest-ever forest fire broke out in the fourth year of King Soonjo (1804) in the east coast of Korea in Kangwon province. The fire had resulted in 61 fatalities and 2,600 destroyed houses. Forest fire in the east coast of Korea, Kangwon province, in the $13^{th}$ year of King Hyeonjong (1672) is recorded to have caused the highest number of deaths, 65people. The most frequent cause of forest fires during Chosun Dynasty was unidentified (42 cases), followed by accidental fire (10 cases), arson or lightning (3 cases), fire during hunting (2 cases), play with fire by children, destruction of patty fields and dry fields by fire and house fire (1 case respectively). By region, 56 % of forest fires erupted in the east coast (39 cases) and this was followed by the west sea (9 cases), Seoul and central region (8 cases) and the southern part of Korea (7 cases). By season, spring was found to be most vulnerable to forest fire as it accounted for 73 % of the total amounting to 46 cases. Behind were summer (11 cases), winter (6 cases) and autumn (0 case). Specifically, most forest fire broke out on April and May, which is the same as today. Archives and literature indicate that the person who involved in forest fire by accidental as well as arson had to be punished by banishment, expulsion from government office and public hanging. Also, officials in charge of the region that suffered forest fire were subject to reprimand. In conclusion, risk and gravity of forest fires were evident during the Chosun Dynasty as specified in historical archives and share many similarities with today's forest fires in terms of the duration and regional patterns.

Effect of Forest Therapy Program on Stress and Physical Health Promotion of Forest Fire Victims (산림치유프로그램이 산불피해지역주민의 스트레스와 신체적 건강증진에 미치는 영향)

  • Kim, Jin-Sook;Kim, Myeong-Jong;Min, Ji-seon;Hwang, Seong-ug;Yu, Ji-hoon;Jeon, Yeong-soon
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.915-924
    • /
    • 2020
  • The purpose of this study was to conduct a forest healing program for victims affected by the large forest fires of 2017 in Gangneung and to investigate its effects on the stress and physical health promotion of the victims. From January to March 2019, three forest therapy programs were conducted on 49 residents of four villages that suffered forest fires in the National Center for Forest Therapy, Daegwallyeong. The results showed that the degree of stress of forest fire victims decreased significantly by means of these programs. Furthermore, autonomic nerve activity, stress resistance, stress index, and fatigue decreased significantly and average heart rate and heart stability also improved.

A Study on the Recovery Rate of Vegetation in Forest Fire Damage Areas Using Sentinel-2B Satellite Images (Sentinel-2B 위성 영상을 활용한 산불 피해지역 식생 회복률에 관한 연구)

  • Gumsung Cheon;Kwangil Cheon;Byung Bae Park
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.463-472
    • /
    • 2023
  • The amount of damage and the area of damage to forest fires are increasing globally, and the effectiveness analysis of the restoration method after the damage is performed insufficient. This study calculated the area of forest fire damage was calculated using Sentinel-2B satellite images and stack map and the intensity of forest fire damage is analyzed according to the forest type. In addition, the vegetation index was calculated using various wavelength bands. Based on the results, the vegetation resilience by the restoration method was quantitatively. As results, areas with a high proportion of coniferous forests suffered high intensity forest fire damage, and areas with a relatively high ratio of mixed and broad-leaved forests tended to have low forest fire damage. Also, artificial forests showed a recovery of about 92.7% compared to before forest fires and natural forests showed a recovery of about 99.6% from the result of analyzing vegetation resilience in artificial and natural forests after forest fires. Accordingly, it was confirmed that natural forests after forest fire damage had superior vegetation resilience compared to artificial forests. It can be proposed that this study is meaningful in providing important information for efficiently restoring the affected target site and the selection criteria for trees to reduce forest fire damage through the evaluation of vegetation resilience by the intensity of forest fire damage and restoration methods.

Can the Expansion of Forest Roads Prevent Large Forest Fires? (산림 내 도로의 확대는 대형산불을 막을 수 있는가?)

  • Suk-Hwan Hong;Mi-Yeon An;Jung-Suk Hwang
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.439-449
    • /
    • 2023
  • This study was conducted to verify the role of forest roads in the extinction of large forest fires in Korea. The study area was the forest fire-damaged area of Gangneung City, Gangwon Special Self-Governing Province, in April 2023, which is one of the areas with the highest road density among the major forest fires that have occurred so far. The scope of the forest fire damage area was confirmed through on-site survey, and the intensity of the fire was carried out through Sentinel-2 satellite imagery analysis. After that, the relationship between the damage range and intensity and the forest road was examined. About 59.6 km of roads were built within 50 m from the boundary of the forest fire damage area, which can easily access the entire 149.1 ha of forest fire damaged area. The road density is as high as 168.9 m/ha. All forests that were fragmented by roads were fragmented into 83 places, and all of these forests could be judged to have spread by spotting fire. As a result of analyzing the distribution of damage intensity by distance from the road to see the extent of damage according to the ease of access of fire extinguishing vehicles, it was confirmed that the proportion of areas with low-intensity damage has increased sharply even from 75 m or more away from the road. The results of analyzing the distribution of damage intensity by altitude to see the extent of damage according to the ease of access of fire extinguishing showed that the proportion of areas with low-intensity damage increased as the altitude increased, while the proportion of areas with damage of more than strong intensity decreased as the altitude increased. It was confirmed that there is no data that roads inside or adjacent to forests in the forest fire area of Gangneung City are effective in extinguishing forest fires. These results are contrary to the logic that increasing the road density in forests is effective in extinguishing forest fires. In the case of this fire area in Gangneung City, the road density is 43 times higher than the current road density in Korea claimed by the Korea Forest Service of 3.9 m/ha. This study suggests that roads can be a hindrance to extinguishing forest fires.

A Numerical Study on the Effects of the Wind Velocity and Height of Grassland on the flame Spread Rate of Forest Fires (초지화재 발생시 바람의 속도 및 초본의 높이가 화염전파에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Sung-Yong;Kim, Dong-Hyun;Ryou, Hong-Sun;Lee, Sung-Hyuk
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.252-257
    • /
    • 2008
  • With the rapid exuberant growth of the forest, the number and size of forest fires and the costs of wildland fires have increased. The flame spread rate of forest fires is depending on the environmental variables like the wind velocity, moisture of grassland, etc. If we know the effects of the environmental variables on the fire growth, it is useful for wildland fiIre suppression. But analysis of the spread rate of wildland fire for these effects have not been established. In this study, the effects of wind velocity and height of grassland fuel have been investigated using the WFDS which is developed at NIST for prediction of the spread of wildland fires. The results showed that the relation between the height of the fuel and the spread rate of the head fires is, and the spread rates related to the wind velocity are predicted 17% less than the experimental results of Australia. When the wind velocity is over 7.5m/s, the concentration of pyrolyzed gas phase fuel is getting low due to fast movement of pyrolyzed gas, the flame spread rate becomes slow.

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4 (농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가)

  • Cha, Sungeun;Won, Myoungsoo;Jang, Keunchang;Kim, Kyoungmin;Kim, Wonkook;Baek, Seungil;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1273-1283
    • /
    • 2022
  • Recently, forest fires have frequently occurred due to climate change, leading to human and property damage every year. The forest fire monitoring technique using remote sensing can obtain quick and large-scale information of fire-damaged areas. In this study, the Gangneung and Donghae forest fires that occurred in March 2022 were analyzed using the spectral band of Sentinel-2, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI) to classify the affected areas of forest fires. The U-net based convolutional neural networks (CNNs) model was simulated for the fire-damaged areas. The accuracy of forest fire classification in Donghae and Gangneung classification was high at 97.3% (f1=0.486, IoU=0.946). The same model used in Donghae and Gangneung was applied to Uljin and Samcheok areas to get rid of the possibility of overfitting often happen in machine learning. As a result, the portion of overlap with the forest fire damage area reported by the National Institute of Forest Science (NIFoS) was 74.4%, confirming a high level of accuracy even considering the uncertainty of the model. This study suggests that it is possible to quantitatively evaluate the classification of forest fire-damaged area using a spectral band and indices similar to that of the Compact Advanced Satellite 500 (CAS500-4) in the Sentinel-2.

Estimation of Biomass Loss and Greenhouse Gases Emissions from Surface Layer Burned by Forest Fire (산불로 인한 지표층 연소량 및 온실가스 배출량 추정)

  • Lee, Byungdoo;Youn, Ho Jung;Koo, Kyosang;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.286-290
    • /
    • 2012
  • Globally, the forest fires are a significant contributor of carbon dioxide and other greenhouse gases in the atmosphere. In this study, fuel load consumed by forest fire and emission of green house gases were analysed in the surface layer. For this, remaining fuel was collected and weighed with the species (Japanese red pine, deciduous) and the forest fire types (surface fire, crown fire) in the 51 forest fires. 8,361 kg/ha fuel load was consumed in deciduous forest damaged by surface fire, and 8,055 kg/ha, 12,333 kg/ha in Japanese red pine burned by surface fire and crown fire. The combustion ratios were 78, 59, and 90%, respectively. 15,856 kg/ha the green house gases such as $CO_2$, $CH_4$, $CH_4$ in deciduous forest burned by surface fire was emitted and 14,834 kg/ha, 22,709 kg/ha in Japanese red pine burned by surface fire and crown fire.

Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data (준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명)

  • Park, Seung-Shik;Kim, Sun-Jung;Gong, Bu-Joo;Lee, Kwon-Ho;Cho, Seog-Yeon;Kim, Jong-Choon;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.