• 제목/요약/키워드: forecasting performance

검색결과 722건 처리시간 0.026초

Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in Artificial Neural Network Based Model

  • Aggarwal, Sanjeev Kumar;Saini, Lalit Mohan;Kumar, Ashwani
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.639-650
    • /
    • 2008
  • Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain variables to form the set of input variables for the proposed forecasting model. The behavior of the wavelet domain constitutive series has been studied based on statistical analysis. It has been observed that forecasting accuracy can be improved by the use of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition has been performed and the empirical evidence suggests that accuracy improvement is highest at third level of decomposition. Forecasting performance of the proposed model has been compared with (i) a heuristic technique, (ii) a simulation model used by Ontario's Independent Electricity System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v) Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR) model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of the proposed WT based NN model is satisfactory and it can be used by the participants to respond properly as it predicts price before closing of window for submission of initial bids.

MLP ANN 가뭄 예측 모형에 대한 ROC 평가 (ROC evaluation for MLP ANN drought forecasting model)

  • 정민수;김종석;장호원;이주헌
    • 한국수자원학회논문집
    • /
    • 제49권10호
    • /
    • pp.877-885
    • /
    • 2016
  • 본 연구에서는 기상학적 가뭄지수인 표준강수지수(Standardized Precipitation Index, SPI)를 이용하여 우리나라 전역에 대한 가뭄예측의 시공간적인 평가를 수행하였다. 또한 다층 퍼셉트론 인공신경망(Multi Layer Perceptron-Artificial Neural Network, MLP-ANN) 예측 기법을 이용하여 SPI(3), (6)에 대한 선행예보시간별 가뭄 예측을 실시하였다. 입력 자료는 기상청 산하의 59개 관측소에서 관측된 기상자료를 활용하였고, 관측자료 기간은 1976~2015년이다. 예측 모델의 성능평가는 기준점(Threshold)에 따른 가뭄 발생유무와 같은 이진분류 혼동행렬을 구성하여 Receiver Operating Characteristics (ROC) score와 조건부 확률에 따른 F score를 산정하여 예측 성능평가를 수행하였다. 예측성능에 대한 ROC 분석결과 다층 퍼셉트론 인공신경망(MLP-ANN) 모형을 적용한 가뭄예측성능이 매우 우수한 것으로 나타났으며, SPI (3)은 2개월, SPI (6)는 5개월 정도의 선행예측이 충분히 가능한 것으로 나타났다.

멤버십 함수와 DNN을 이용한 PM10 예보 성능의 향상 (Improvement of PM10 Forecasting Performance using Membership Function and DNN)

  • 유숙현;전영태;권희용
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1069-1079
    • /
    • 2019
  • In this study, we developed a $PM_{10}$ forecasting model using DNN and Membership Function, and improved the forecasting performance. The model predicts the $PM_{10}$ concentrations of the next 3 days in the Seoul area by using the weather and air quality observation data and forecast data. The best model(RM14)'s accuracy (82%, 76%, 69%) and false alarm rate(FAR:14%,33%,44%) are good. Probability of detection (POD: 79%, 50%, 53%), however, are not good performance. These are due to the lack of training data for high concentration $PM_{10}$ compared to low concentration. In addition, the model dose not reflect seasonal factors closely related to the generation of high concentration $PM_{10}$. To improve this, we propose Julian date membership function as inputs of the $PM_{10}$ forecasting model. The function express a given date in 12 factors to reflect seasonal characteristics closely related to high concentration $PM_{10}$. As a result, the accuracy (79%, 70%, 66%) and FAR (24%, 48%, 46%) are slightly reduced in performance, but the POD (79%, 75%, 71%) are up to 25% improved compared with those of the RM14 model. Hence, this shows that the proposed Julian forecast model is effective for high concentration $PM_{10}$ forecasts.

지원벡터머신을 이용한 단기전력 수요예측에 관한 연구 (A Study on the Short-term Load Forecasting using Support Vector Machine)

  • 조남훈;송경빈;노영수;강대승
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권7호
    • /
    • pp.306-312
    • /
    • 2006
  • Support Vector Machine(SVM), of which the foundations have been developed by Vapnik (1995), is gaining popularity thanks to many attractive features and promising empirical performance. In this paper, we propose a new short-term load forecasting technique based on SVM. We discuss the input vector selection of SVM for load forecasting and analyze the prediction performance for various SVM parameters such as kernel function, cost coefficient C, and $\varepsilon$ (the width of 8 $\varepsilon-tube$). The computer simulation shows that the prediction performance of the proposed method is superior to that of the conventional neural networks.

계량경제모형간 국내 총화물물동량 예측정확도 비교 연구 (A Comparative Study on the Forecasting Accuracy of Econometric Models :Domestic Total Freight Volume in South Korea)

  • 정성환;강경우
    • 대한교통학회지
    • /
    • 제33권1호
    • /
    • pp.61-69
    • /
    • 2015
  • 이 연구에서는 국내 총 화물물동량에 대한 5개 계량경제모형들의 예측정확도를 비교한다. 적용된 5개 모형은 통상최소자승모형, 부분조정모형, 축소된 자기회귀분포시차모형, 벡터자기회귀 모형, 시간변동계수모형이다. 모형의 추정과 예측은 1970-2011년 동안의 연간 국내 화물물동량 자료와 광공업생산지수를 이용하여 수행되었다. 5개 모형은 반복적인 예측방법을 이용하여 1년 후, 3년 후, 5년 후 예측성능이 비교되었다. 추가적으로 장래변동성의 크기에 따라 두 예측기간으로 나누어 예측정확도를 비교하였고, 결과적으로 시간변동계수모형은 변동을 갖는 예측기간에 대해서 가장 높은 정확도를, 반면에 벡터자기회귀 모형은 점진적인 변화를 갖는 예측기간에 대해서 다른 모형에 비해 우수한 성능을 보여주는 것으로 분석되었다.

웨이블릿 패킷변환과 신경망을 결합한 하천수위 예측모델 (River Stage Forecasting Model Combining Wavelet Packet Transform and Artificial Neural Network)

  • 서영민
    • 한국환경과학회지
    • /
    • 제24권8호
    • /
    • pp.1023-1036
    • /
    • 2015
  • A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.

신경망을 이용한 시계열 분석 : M1-Competition Data에 대한 예측성과 분석 (Time Series Analysis Using Neural Networks : Forecasting Performance Analysis with M1-Competition Data)

  • 지원철
    • 지능정보연구
    • /
    • 제1권1호
    • /
    • pp.135-148
    • /
    • 1995
  • Neural Networks have been advocated as an alternative to statistical forecasting methods. However, the empirical evidences are not consistent. In the present experiments, multi-layered perceptron (MLP) are adopted as approximator to the time series generating processes. To prevent the MLP from being overfitted to the given time series, the information obtained from ARMA modeling is used to determine the architecture of MLP. The proposed approach was tested empirically using the subsamples of the 111 time series used in the first Markridakis Competition. The forecasting results were analyzed to find out the factors that affect the performance of MLP. The experimental results show that the proposed approach outperforms ARMA models in terms of fitting and forecasting accuracy. In addition, it is found that the use of deseasonalized data improves the forecasting accuracy of MLP.

  • PDF

기업실적에 대한 재무분석가의 예측활동에 관한 실증연구 (An Empirical Study of Financial Analyst's Forecasting Activities on the Firm's Operating Performances)

  • 곽재석
    • 재무관리연구
    • /
    • 제20권1호
    • /
    • pp.93-124
    • /
    • 2003
  • 본 연구에서는 2000년부터 2002년까지의 기간에서 국내 외의 재무분석가들이 1999년$\sim$2003년까지의 각 연도별 연간 매출액, 영업이익과 순이익에 대하여 발표한 예측치를 대상으로 하여 재무분석가들이 기업실적을 얼마나 정확하게 예측하며, 예측치를 수정할 때 어떤 체계적인 경향을 보이며, 기업실적을 예측할 때 전년도의 실적변화에 대해 어떤 반응을 보이는지를 분석하는데 목적을 두었다. 이러한 분석목적을 달성하기 위하여 재무분석가별, 예측년도별, 전년도의 기업실적 변화별로 표본을 각각 분류하여 재무분석가별 예측의 정확성, 합의예측치의 상대적 정확성, 예측치의 수정패턴 및 예상 밖의 전년도 실적변화에 대한 반응을 분석하였다. 본 연구에서 발견된 분석결과를 요약하면 다음과 같다. 첫째, 매출액, 영업이익과 순이익의 표준예측오차가 모두 통계적으로 유의적인 음(-)의 값을 보임으로써 재무분석가들이 기업실적을 상향 편의적으로 예측하는 경향이 있음을 발견하였다. 둘째, 국내. 외 재무분석가의 예측정확성을 비교한 분석에서 국내 재무분석가들이 국외 재무분석가들에 비해 상대적으로 정확한 예측을 하고 있음을 발견하였다. 셋째, 예측시점별로 측정한 평균표준예측오차에 대한 분석에서는 예측시점이 기업실적의 발표시점에 가까워질수록 예측의 정확성이 높아짐을 발견하였다. 넷째, 개별재무분석가와 비교할 때, 합의예측치의 정확성이 상대적으로 떨어지는 것으로 나타났으며, 합의 예측치를 추정할 때 평균보다 중위값을 이용하여 추정한 경우 예측오차를 줄일 수 있는 것으로 나타났다. 다섯째, 재무분석가들이 기업실적을 과대 예측한 다음 예측치를 하향 수정하는 것으로 나타났으나 체계적이지 않음을 발견할 수 있었다. 즉 재무분석가들은 전년도의 기업실적에 따라 예측치를 상향 또는 하향 수정하는 것으로 나타났다. 여섯째, 재무분석가들은 예측활동을 수행하는 과정에서 전년도의 매출액 변화에 대하여 과대 반응하는 한편 전년도의 영업이익과 순이익 변화에 대하여 과소 반응함을 발견할 수 있었다. 일곱째, 재무분석가들의 예측편의를 보다 정확하게 분석하기 위하여 정보변수인 전년기업실적 변수를 예상된 실적변화와 예상치 못한 실적변화로 분류하여 Easterwood-Nutt(1999)모형을 이용해 분석한 결과 세 개의 기업실적변수(매출액, 영업이익과 순이익)모두의 예상치 못한 전년실적변화에 대해 재무분석가들이 과대 예측하는 것이 아니라 낙관적 예측을 수행하는 경향이 있음을 발견할 수 있었다.

  • PDF

하이브리드 모델을 이용하여 중단기 태양발전량 예측 (Mid- and Short-term Power Generation Forecasting using Hybrid Model)

  • 손남례
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.

횡단면분석과 추세분석을 이용한 슈퍼컴퓨팅 성능수요 예측 (Supercomputing Performance Demand Forecasting Using Cross-sectional and Time Series Analysis)

  • 박만희
    • 기술혁신연구
    • /
    • 제23권2호
    • /
    • pp.33-54
    • /
    • 2015
  • 국가차원의 슈퍼컴퓨팅 성능수요 예측은 슈퍼컴퓨터를 활용하는 계산과학분야의 연구자나 연구개발 인프라를 구축 운영하고 있는 전문기관, 과학기술 인프라구축을 주도할 정부기관에 있어서 매우 중요한 정보이다. 본 연구는 그동안 진행되었던 슈퍼컴퓨터 성능관련 예측활동 분석을 통해 과학기술 역량에 영향을 미치는 요인들을 도출하고 이를 슈퍼컴퓨터 기술진보 추세에 적용한 복합 예측모형을 제안하였다. 횡단면분석에서는 슈퍼컴퓨팅 성능에 영향을 미칠 것으로 판단되는 GDP, GERD, 연구원수, SCI논문수를 고려한 다중회귀분석을 수행하였다. 그리고 횡단면분석 결과에 Top500 자료의 성능(Rmax)값을 이용한 시계열분석을 통해 도출된 기간별 기술진보율을 곱하여 슈퍼컴퓨터의 성능을 예측하였다. 제안된 예측모형을 바탕으로 세계 슈퍼컴퓨터 500위의 시계열자료를 이용하여 한국이 2016년에 보유해야 할 슈퍼컴퓨터 성능규모를 예측하였다. 횡단면분석과 기술진보율을 적용하여 2016년 한국의 슈퍼컴퓨팅 성능수요를 예측해본 결과 현재의 추세를 이용할 경우 15~30PF 정도, 목표 국가수준의 추세를 이용할 때 20~40PF 정도의 컴퓨팅 역량이 필요할 것으로 예측되었다. 이 결과는 단순 회귀분석을 적용한 결과인 9.6PF와 횡단면분석을 적용한 결과인 2.5PF와 큰 차이를 나타내었다.