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Electricity Price Forecasting in Ontario Electricity Market Using Wavelet

Transform in Artificial Neural Network Based Model

Sanjeev Kumar Aggarwal, Lalit Mohan Saini*, and Ashwani Kumar

Abstract: Electricity price forecasting has become an integral part of power system operation
and control. In this paper, a wavelet transform (WT) based neural network (NN) model to
forecast price profile in a deregulated electricity market has been presented. The historical price
data has been decomposed into wavelet domain constitutive sub series using WT and then
combined with the other time domain variables to form the set of input variables for the proposed
forecasting model. The behavior of the wavelet domain constitutive series has been studied based
on statistical analysis. It has been observed that forecasting accuracy can be improved by the use
of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition
has been performed and the empirical evidence suggests that accuracy improvement is highest at
third level of decomposition. Forecasting performance of the proposed model has been compared
with (i) a heuristic technique, (ii) a simulation mode! used by Ontario’s Independent Electricity
System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v)
Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR)
model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of
the proposed WT based NN model is satisfactory and it can be used by the participants to
respond properly as it predicts price before closing of window for submission of initial bids.

Keywords: Multiresolution analysis, neural network, normal distribution curve, price forecasting,
wavelet transform.
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Electricity price forecasting is essential for all the
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participants in deregulated electricity markets as a risk
management technique [1]. Using this, generation
companies can maximize their profits by bidding
effectively, whereas; bulk electricity customers can
optimize their load schedules. Accurate price
forecasting also helps in pricing a range of derivative
securities for hedging. Thus forecasting electricity
prices is important yet complex task because price
series is a non-stationary and highly volatile series
with non-constant mean, variance and significant
outliers [2]. The main methodologies followed for
price forecasting are: (i) Production-cost models [3]
and, (ii) Statistical models [4-10]. Production-cost
models are complicated to implement and require
detailed system operation data like participants’
competitive bidding behavior, generation units’ data,
the transmission network data, hydrological
conditions, fuel prices and demand forecasts. The
market operator usually adopts them as they provide
detailed insights into system prices. Statistical
methods require lesser amount of data as compared to
production cost models, and may be adopted by
generation companies in preparing their bidding
strategies and by large consumers for demand side
management. Two main techniques of the statistical
modeling are: (i) Nonlinear models, and (ii) Linear
models. Artificial intelligence based methods
employing NN, which can model complex nonlinear
relationship between input variables and output
variable, have been proposed by different researchers
[4-6]. Whereas; the available linear models are MLR
[7], AR [8], ARIMA [2,9], multivariate time series
models are TF and DR [2,9] and GARCH [10].
Hybrid nonlinear neuro-fuzzy model [6] and game
theoretic model [11] have also been reported.

With the help of WT, a signal can be decomposed
into a parsimoniously countable set of basis functions
at different time locations and resolution levels,
known as MRA analysis. These decomposed series
can be used to unfold inner characteristics of the
signal and hence for more precise forecasting. This
issue has been addressed in this work from price
forecasting perspective and applied to OEM [12] as a
test case system. The rest of the paper is organized as
follows: In Section 2, utilization of WT in a price-
forecasting problem and contribution of the present
work is explained and in Section 3, a brief
introduction of WT is presented. Section 4 covers the
introduction to OEM and selection process of input
variables for price forecasting models. In Section 3,
detailed analysis of effect of WT on price signal and
its statistical properties is investigated. Various price-
forecasting models employed in this work are
described in Section 6. Section 7 consists of the
results analysis and comparison of their forecasting
accuracy. Section 8 is the conclusion.

2. PROBLEM FORMULATION

A price signal exhibits much richer structure than
load series and signal-processing techniques like FT,
WT are good candidates for bringing out hidden
patterns in price series [13]. In order to tackle the
problem of non-stationary price series, wavelets have
been utilized because they can produce a good local
representation of the signal in both time and frequency
domains. WT is used for multi-scale analysis of the
signal and decomposes the time series signal into one
low-frequency sub-series (approximation part) and
some high-frequency sub-series (detailed part) in the
wavelet domain. These constitutive series have better
statistical properties than original price series and
hence better forecasting accuracy can be achieved by
their appropriate utilization. In WT based models, first
of all WT is applied to the price series, prediction is
made in the wavelet domain using a predictive model
like regression model [2,14], time series model
[15,16], or NN [17,18], and then inverse WT is
applied to obtain the actual predicted value in time
domain. During the process, there may be some loss
of information. Moreover, due to characteristics of the
some high frequency detailed series, these series
cannot be predicted accurately [17]. In order to handle
these issues, in this work, inputs to the forecasting
model are a combination of original time domain and
wavelet domain variables. The main difference is that
in other models [2,14-18], prediction is made in the
wavelet domain, whereas; in this work prediction is
directly made in the time domain using both time
domain and wavelet domain input variables. Since
wavelet domain variables have been used in addition
to the time domain variables, so there is no possibility
of loss of information. Other input variables like oil
price, capacity shortfall have also been included to
improve the forecasting accuracy.

Since, relation between price and its influencing
variables is non-linear, therefore; NNs are well suited
for this problem because of their ability to model the
complex and non-linear relationship involved in price
forecasting. The main focus and contribution of this
paper is to improve the forecasting accuracy of NN
model using WT directly in time-domain and assess
the effect of different decomposition levels of price on
forecasting accuracy. Effect of decomposition levels
from one to seven has been evaluated. It has been
empirically proved that by combining both wavelet
domain and time domain variables in a single
framework forecasting accuracy of a nonlinear model
like NN can be improved and third level of
decomposition has been found to be best for
appropriate forecasting. Forecasting performance has
been compared with a heuristic technique, a
simulation model used by Ontario’s IESO, MLR
model, NN model. Neuro-fuzzy [6], ARIMA, TF and
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DR [9] models have also been included to present the
detailed comparison of linear and non-linear models.
Thus, in addition to presenting a new method of price
forecasting, detailed analysis of the various price-
forecasting methodologies has also been presented.
The performance of the proposed model has been
found to be satisfactory and it has real world
application since it utilizes publicly available
information, which can be easily collected by the
participants before they need to submit bids in the
market and also gives sufficient time to the
participants to respond.

3. WAVELET TRANSFORM (WT)

The conventional FT gives the spectral contents of
a signal f(f), but it gives no information regarding
wherein time those spectral components appear This
is suitable only for dealing with signals that do not
evolve with time, i.e. stationary signals. The STFT
provides the time information by computing different
FTs for consecutive time intervals, and putting them
together. Consecutive time intervals of the signal are
obtained by truncating the signal using a sliding
windowing function W(f). STFT gives a fixed
resolution at all times. Once the window is chosen, the
resolution is set for both time and frequency. Wide
analysis window gives poor time resolution and good
frequency resolution and vice-versa. WT overcomes
the preset resolution of the STFT by using a variable
length window. Analysis windows of different lengths
are used for different frequencies [19-21]. The
function used to window the signal is called the
wavelet y(f). The CWT of fir) with respect to a
wavelet yA¢) is defined as:

W(a,b)=—l—jf(t)-w*(z_b jdr, M)

al a

where a and b are real numbers known as scale or
dilation variable and time shift or translation variable
respectively and * denotes complex conjugation. The

normalizing factor 1/\/@ ensures that the energy

stays the same for all @ and b. The CWT offers time
and frequency selectivity. The segment of f{r) that
influences the value of W(a,b) for any (a,b) is that
stretch of f{r) that coincides with the interval over
which y,,(f) has the bulk of its energy. This
windowing effect results in the time selectivity of the
CWT. The frequency selectivity of the CWT can be
understood on the basis of its interpretation as a
collection of linear, time-invariant filters with impulse
responses that are dilations of the mother wavelet
reflected about the time axis. For a large value of a,
the associated filter has a frequency response centered
at a low frequency value and the smaller the value of

a, the more the band pass shifts to a higher frequency.
At small values of a, the CWT possesses good time
resolution and poor frequency resolution. The
opposite is true for large values of a. Therefore, CWT
is suitable for non-stationary signals, in which rapidly
varying high-frequency components are superimposed
on slowly varying low-frequency components such as
seismic signals, load and price signals. Inverse CWT
is also possible and for a real valued y(f) a function
S#) can be recovered from its CWT W{(a,b) as:
I po poo 1
=21 L_ww W(a,b) 5 (t) da db. (2)

The region of support W(a,b) is the set of ordered
pairs (a,b) for which W(a,b)#0. The CWT provides a
redundant representation of the signal in the sense that
the entire support of W(a,b) need not be used to
recover f{t).Therefore, a two-dimensional sequence
D(m,n) is defined which is known as DWT of £¢). In
this, the dilation parameter a=2" where m is an integer
and at any dilation 2" the translation parameter b=2"n
where » is an integer. This corresponds to sampling
the coordinates (a,b) on a grid known as dyadic grid
and the process is called dyadic sampling. The DWT
is still the transform of continuous signal and the
discretization is only in the variables a and b.

An efficient algorithm to implement the scheme
using filters was developed by Mallat [21] and is
available in [22]. This algorithm has two stages:
decomposition and reconstruction. In first stage, the
original signal is passed through two complementary
filters and emerges as two signals: approximation
(general trend component) and detail (high frequency
component). Each of these signals has the same
number of data points, and then these are down
sampled by two, to get DWT coefficients. This
decomposition can be iterated and successive
approximations can be decomposed to many lower
resolution components. In second stage, these
components can be assembled back into the original
signal. Thus, wavelet decomposition involves filtering
and down sampling, and the wavelet reconstruction
involves up sampling and filtering. The low and high

Decomposition

Fig. 1. Single stage decomposition and reconstruction.



642 Sanjeev Kumar Aggarwal, Lalit Mohan Saini, and Ashwani Kumar

Fig. 2. A three level decomposition (S=A3+D3+D2+D1).

pass decomposition filters (L. and H) and their

associated reconstruction filters (L' and H') form QMF.

A single stage decomposition and reconstruction has
been shown in Fig 1 and corresponding three-stage
decomposition has been shown in Fig. 2.

4. ONTARIO ELECTRICITY MARKET AND
PRICE INFLUENCING VARIABLES

4.1. Electricity market introduction

OEM follows a real time single settlement design
structure [12]. The MCP for electricity in OEM is
based on bids and offers into the market from the
participants and is set for each five-minute interval. In
addition to the five-minute prices, each hour HOEP is
determined by taking the average of twelve MCPs
during an hour. Each day consists of 24 trading
intervals of one-hour duration. Time-table for market
operations is as follows: (i) Pre-dispatch day (D-1):
6:00 AM — Window opens for submission of bids for
dispatch day D, 11:00 AM - Initial bids must be
submitted for dispatch day D. (ii) Dispatch day (D): A
registered market participant may revise bid data two
hours prior to the beginning of each dispatch hour.
This HOEP has been predicted in this study and the
proposed model is able to provide the forecasted
HOEP information before submission of initial bids
on day D-1. Year wise statistical properties of HOEP
are given in Table 1. Following the definition of
historical volatility [9], the daily logarithmic return y;
for all market prices can be calculated as:

Ve =In(p,)—In(p;_94)s (3)

where p, is the price information at time t, and p,.o4 is
the price information 24 hours before time t.
Historical price volatility (o) is defined as the

standard deviation of y, over a specified period of time.

It can be observed from Table 1 that usual level of
volatility is quite high in OEM and therefore, HOEP
prediction is difficult.

4.2. Input variable selection
Price is dependent on many independent variables.
Following hourly variables have been considered in

Table 1. Statistical properties of HOEP.

Year 2002 | 2003 | 2004 | 2005
Mean 52.0 | 54.0 | 499 | 68.5
Minimum 0 11.54] 5.25 8.6

Maximum 1028.4| 548.5 | 340.4 | 639.9

Standard deviation | 46.08 | 35.9 | 21.9 | 40.7

Historical Volatility

0.41 | 0.49 | 036 | 0.40
(o)

Table 2. Correlation analysis of price drivers (July
2004 - June 2005).

Correlation
S. | Category of |  Explanatory coefficient
No.| variable Variable with HOEP
0,9
1 HOEP (D-n, t), 0.45,0.43,
’ Price n=23,7,14 0.37,0.4
variables e
Crude oil price
2. (D-2, 1) 0.24,0.25
Weather Temperature
3 variable (D-2,1) 0.03
Forecasted energy
4. demand (D, t) 0.6
5 | SSRdata Forecast energy 057
excess (D, t)
Forecast capacity
6. excess (D, t) -0.63
D: day for which forecast is being made,
D-2: 2 days before the D-day, t: hour of the day

this work: (i) past HOEP, (ii) IESO’s forecasted
energy demand, (iii) forecasted energy excess, (iv)
forecasted capacity excess (v) crude oil prices, and
(vi) temperature. Past HOEP data have been taken
from [12], and variables (ii) to (iv) have been taken
from SSR published by IESO. Crude oil price and
temperature data have been collected from [23] and
[24] respectively. Correlation analysis [25] has been
used to select explanatory variables and correlation
coefficients of the variables with HOEP have been
presented in Table 2. It is evident that past HOEP,
forecasted energy demand, energy excess, capacity
excess and crude oil prices show good linear
correlation with the price, whereas; temperature does
not exhibit significant correlation with the price.
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5. EFFECT OF WT ON HOEP

The statistical description of the price signal using
the wavelet decomposition as a multi-scale analysis
has been presented in this section. The main aspect of
signal is what information is contained in the signal,
and what pieces of information are useful. In order to
do that wavelet decomposition was applied to the
HOEP series of a particular week (March 1-7, 2004).
Price signal is highly volatile and corrupted by the
occasional spikes and follows a weekly-daily cycle
with each sample of one-hour interval. Before
performing wavelet decomposition, two issues need to
be resolved: selection of mother wavelet and
definition of the number of levels of decomposition.
There are many wavelets that can be used in practice
[22]. To choose the most appropriate wavelet, the
attributes of the mother wavelet and the characteristics
of the signal must be taken into account. Daubechies
wavelets are the most appropriate for treating a non-
stationary series [26]. For these families of wavelets,
the smoothness increases as the order of the functions
do; nevertheless, the support intervals also increase,
which may cause the prediction to deteriorate.
Therefore, low order wavelet functions are generally
advisable. In this work, Daubechies wavelets of orders
1-4 have been considered and it was observed that
decomposed series by wavelet of order 2 are more
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similar to original signal than by other orders and
hence revealed the hidden patterns in HOEP in a more
meaningful way.

It is advisable to select a suitable number of
decomposition levels based on the nature of the signal.
In this paper, based on the features of the price curve,
one to seven levels of decomposition have been
considered. Fig. 3 shows price signal’s approximation,
A, to Aj, and detailed parts, D; to D;. Approximation
curves correspond to low frequency bands and
represent the trend of the price signal. On the other
hand, detailed curves correspond to high frequency
bands and contain the local short-period discrepancies
in the price signal due to bidding strategies adopted by
the participants. The level, whose approximation
series is having the characteristics of normal
distribution curve and yet closest to the shape of the
original HOEP series, represents the filtered version
of the original signal in a better way than the others.
Table 3 presents skewness and kurtosis characteristics
[25] of these series. Skewness is a measure of the
symmetry of the data around the data mean and is zero
for an ideal normal curve. Kurtosis is a measure of
how outlier prone a distribution is. Kurtosis of normal
distribution curve is three. From Fig. 3, it can be
observed that, A;, A, and A; series are similar in shape
to the original signal than the other approximation
levels. But statistical properties of A, are almost

Original HOEP signal and its detailed series 1 to 7.

HCEP

Detail D7

Detail D6

Detail D5

Detail D4

Detait D3

Detail D2

Dretail D1

Hours

Fig. 3. Price and its constitutive series using WT (March 1-7, 2005).
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Table 3. Statistical properties of constitutive series of

HOEP.

Tnpe Skewness | Kurtosis Tlme Skewness | Kurtosis
series series

HOEP| ) 49 | 104 [HOPP | 149 | 10.14
series series
Approx Detail

AT 0.94 4.47 D7 -0.23 3.54
Approx Detail

A6 0.61 4.46 D6 -0.83 6.64
Approx Detail

A5 0.59 3.93 D5 0.03 6.63
Approx Detail

A4 0.74 3.96 D4 0.33 5.75
Approx Detail

A3 0.97 5.33 D3 -0.27 4.42
Approx Detail

TA2 0.83 4.35 D2 1.93 38.22
Approx Detail

Al 1.15 6.31 DI -0.86 36.55

similar to HOEP series and therefore cannot be
utilized for forecasting in a better way. Better
statistical properties at levels A4-A7 are obtained at the
cost of loss of some meaningful information. Thus
third and second levels of decomposition describe the
regular behavior of the price series in a more thorough
and meaningful way and lead to improvement in
statistical properties without any loss of information.
The corresponding details have been examined now.
From Fig. 3, it can be seen that range of detailed parts
is on lower side as compare to range of approximation
parts. Further range of details D, to Dy is lower than
the range of D; to Dj, thus detailed parts Dy to Dy are
mainly superficial random noise, as is evident from
their Kurtosis characteristic as well. The details D,
and D, contain useful high frequency information
regarding abrupt changes in the signal. They exhibit
signal irregularities and have similar range and mean
values. Range of detail D; is higher than the details
D;-D, and it contains peaks corresponding to time
localization of the peak price in the price series. Thus
although, second decomposition level appears to be
better than third decomposition level in terms of
statistical characteristics of the approximation series,
but due to the ability of D; to detect localized swings
in price accurately, third level of decomposition is
better positioned for price prediction and indeed
empirical evidence regarding this has been provided

in Section 7.1 after carrying out sufficient expetiments.

6. MODELS AND METHODOLOGY FOR
' HOEP FORECASTING

This section describes the methods and models used
and compared for price forecasting in this work.

These are as follows:

6.1. Heuristic method (PM1)

For price forecasting, heuristic method assumes a
strong and linear relationship between price and load,
whose trends and levels repeat daily, weekly and
seasonally. The expected price predicted by this
method can be defined as:

La (4)

Pd,t = Pd—comp,t X I
d—comm,t

where

P4 : the expected price for day d at hour ¢

P tcomp,: + the price at hour ¢ of the comparable day
of forecast day d

L,, :the forecast load for day d at hour 1

L

of forecast day d.

Comparable day has been assumed to be
corresponding day of the previous week ie., 7 days
before the D-day. This has been taken to capture the
weekly periodicity. Forecasted demand for D-day was
taken as L, in (4) to predict the HOEP.

: the load at hour ¢ of the comparable day

d—comp .t

6.2. IESO model (PM2)

This is the model used by IESO and is simulation-
based forecast information for the market participants.
The DSPS determines the schedules and prices for
energy in Ontario. The DSPS consists of several
system and data analysis blocks, with a dc-based
security-constrained optimal power flow block at its
heart [27]. The pre-dispatch run of DSPS is used to
provide the market participants with the projected
schedules and prices for advisory purposes in advance.
The information used by DSPS is dispatch data
submitted by registered market participants, IESO’s
own load forecast, transmission system and ancillary
services information, PDPs are available 3 hour, 2
hour and 1 hour before the actual dispatch
corresponding to each trading interval. One hour
before PDP information from IESO website was taken
to make a comparative study with the other models.

6.3. MLR model (PM3)

A regression model is a mathematical equation that
describes the relationship between two or more
variables.The dependent variable (price) may be
written as a linear function of a number of
independent variables that are known [25728]. A
multiple linear system model that has n independent
inputs (X, X3, X3, ... X,) and one output ¥ at any time
t can be described by the following equation:

Y=ﬂ0 + ﬂ].X} + ﬁg.Xg + ...t ,Bk.Xk +u, (5)
Where ﬂo: ﬂl’ ﬂ.?z

... [ are unknown regression
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Table 4. Input variable set.

S. No. Variable name Time lag
P1 HOEP D-2
P2 HOEP D-3
P3 Crude oil price D-2
P4 Forecasted demand D
P5 Forecasted Energy D
P6 | Forecasted Capacity D

coefficients, u is the independent and normal
distributed random error term having mean zero and
constant variance for different observations. The
estimation of the regression coefficients is found
using the least square estimation technique.

Variable segmentation has been applied to the input
data set by separating the whole series into 24 time
series, each one corresponding to an hour of the day.
Then separate regression coefficients are calculated
for each of the 24 time series. These coefficients for
the predicted day are calculated using the data of the
past ninety-one days. All input variables given in
Table 4 were considered for prediction and the model
has been implemented using Matlab7 [25].

6.4. NN model (PM4)

The steps for price forecasting procedure are:

Step 1: All variables given in Table 4 have been
selected as input variables and complete data set has
been divided into 24 separate hourly series. All inputs
X; and output Y; are scaled to be in the range [-1, 1].

Step 2: a three-layered FFNN (Fig. 4) has been
selected having six input nodes (equal to number of
input variables), four hidden nodes with log-sigmoid
transfer function and one output node with linear
transfer function, for each series. So for predicting the
each price point, 33 parameters need to be estimated.
This network was trained with gradient descent with
momentum training algorithm. The momentum
constant and learning rate have been kept equal to 0.6
and 0.1 respectively.

Step 3: a moving window of past 91 days data has
been used for NN training and estimating the
parameters for D-day. The maximum epochs were set
equal to 30,000 and regularization has been used to
avoid over fitting. The performance function used is:

M =yM,+(-y)M,, (6)

where v is the performance ratio and has been set at
0.7. M; is mean squared errors for training data and

M, is the mean squared of network weights and biases.

The performance goal was kept at 0.05 [29].

6.5. Wavelet-NN model (PM5)
The basic forecasting steps followed are similar to
PM4. The difference is in the input variable set, which

fi=Log-sigmoid function
f2= Linear function
P~ Inputs, T = Target

P3
P4
Ps
P6

Input Hidden Output
Layer Layer Layer

Fig. 4. Architecture of NN Model (PM4).

fr=Log-sigmoid function
f2 = Linear function
P = Inputs, T = Target

Pl

P6
A3

D3

DI

Input Hidden Output
Layer Layer Layer

Fig. 5. Architecture of Wavelet NN Model at third
decomposition level (PM5-D3).

consists of both time domain and wavelet domain
variables (Fig. 5). To obtain wavelet domain variables,
multi-scale analysis using wavelet transform has been
applied. Daubechies wavelet of order 2 has been used
for decomposition of HOEP. This model has been
further explained in Section 7.

7. FORECASTING RESULT ANALYSIS AND
DISCUSSION

MAPE has been adopted as the accuracy criteria to
assess and compare the performance of the models.

NIX,-X
MAPE =~ |~~~/ 1100, (7
Nl X

where X, is the actual value of the predicted variable
and Xy is the forecasted value. N is the number of
observations used for analysis. N = 24, for daily
MAPE calculations.

Three time periods, each of two weeks duration,
have been selected for testing the performance of the
models [9]. The first test period (TP1) is from April
26 to May 9, 2004. This is spring’s low demand
period. The second test period (TP2) is from July 26
to August 8, 2004, which is summer peak-demand
period. Winter high-demand period, from December
13-26, 2004, has been selected as third test period
(TP3).
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7.1. Effect of multi-scale analysis on the perfor-
mance of Neural Network
A combination of time domain and wavelet domain
variables has been used in PMS5. The effect of
different levels of decompositions levels was verified
after conducting several experiments. First of all,
HOEP series, consisting of data up to day D-2, was
decomposed up to level 1, and then decomposed
approximate part (A;) and detailed part (D;) were
included as additional wavelet domain variables in the
six time domain variable set given in Table 4. All
parameters of NN viz. learning rate, momentum
constant etc. were kept same as that in model PM4. In
total seven experiments were conducted, by consider-
ing wavelet domain variables from decomposition
level 1 to 7. The testing results corresponding to these

Table 5. Forecasting accuracy comparison at different
decomposition levels.

Additional HOEP
wavelet domain |MAPE|MAPE|MAPE|Average]

Model | ™0 Hablesin | (TP1)|(TP2) | (TP3) | MAPE
addition to P1-P6

PM4 ) 17.954|18.859[18.359| 18.391

PM5-DI|  A.D,  |17.497|18.464[17.813(17.925

PMS-D2| A, D,D, |17.269]18.362|17.773| 17.801

PM5-D3| A, D, D,, D, |17.235(18.26617.626| 17.709

PMS-D4|A, D, Dy, D, Ds|17.318(18.339{17.594| 17.75

pMs-Ds| A9 Do D2 Ds 5 395016 458117.661] 17.831
D49 D5
A6, Dls D29 D37
ps-De| A6 Py % B 117.124/18.583)17.879| 17.862
_ A75 Dls D29 D3s D47
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Fig. 6. MAPE at different decomposition levels of
HOEP (Model PM5-D1 to PM5-D7).

experiments have been presented in Table 5 and
average MAPE during these experiments has been
shown in Fig. 6. It can be observed that, better
forecasting accuracy has been achieved by including
wavelet domain variables. Performance of models of
PMS5 is better than PM4. As far as effect of different
decomposition levels is concerned, MAPE decreases
up to level third (Fig. 6) and then it starts increasing.
Thus results are best at third level of decomposition
with PM5-D3 outperforming PM4 by 3.71%.

7.2. Effect of variation of NN design on the perfor-
mance of PM5

While designing an NN-based forecasting system,
there are a large number of choices that need to be
made. The following issues are important: (i) number
of input neurons, (ii) number of hidden layers and
neurons in each layer, (iii) number of output neurons.
Since a system of 24 NNs in parallel has been used,
therefore number of output neurons is one for each
NN. The advantage of this method is that the
individual networks are relatively small, and so they
are not likely to be over fitted [30]. For number of
hidden layers, it has been shown in [30], that one layer
is sufficient to approximate any continuous function.
Therefore one hidden layer has been selected to keep
the model simple and smooth. The number of input
neurons is equal to the number of input variables,
which have been identified using linear correlation
analysis, as already discussed in Section 4.2 for time
domain variables and subsequently in Section 7.1 for
wavelet domain variables. It has been proved
empirically that third level of decomposition is the
best; therefore number of input variables is equal to
10 (Fig. 5).

Gradient descent with momentum training
algorithm updates the weights and biases in the
direction of the negative gradient of the performance
function. Its learning rate and momentum parameters
need to be adjusted to achieve faster and smoother
training. Since, in a price-forecasting problem,
accuracy is more important than speed. Therefore,
these parameters must be adjusted appropriately to get
smooth training. The proposed model confirms this
requirement has been shown in Fig. 7, where training
feature is plotted. This shows that training of the
model is smooth and free of bumps and undue
oscillations. For designing NN based model, the
frequently encountered problem is that of over fitting,
which usually means estimating the training data well,
but yet producing the poor forecasts on testing data.
This problem has been handled in this work, by
modifying the performance function by adding an
additional penalty term to the mean squared error
function. This term penalizes for the complexity of the
model. The performance ratio (y) controls the effect of
this penalty term. Another aspect that needs to be
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Fig. 8. Effect of NN parameter variation on model
performance.

checked to avoid over fitting is the number of hidden
neurons. There is no theoretical basis for the selection
of hidden neurons [30]. In this work, a number of
experiments were carried out to see the effect of
variation of y and number of hidden neurons on model
performance. The number of neurons was varied from
2 to 6 and y was varied from 0.4 to 0.9. The effect of
these variations has been plotted in Fig. 8. When the
number of neurons is low, this leads to under fitting
and vice versa. When v is increased from 0.4 t0 0.9, in
each case accuracy increases up to a certain value of y
and then it decreases. The optimum performance of
the model has been observed, when the number of
neurons 1s 4 and v is 0.8. These parameters were then
set to make the final comparison with the other
models as explained in the Section 7.3.

7.3. Performance comparison with the other models
The performance of the five models explained in
this work was compared with the earlier models
proposed for OEM. Two other studies carried out for
HOEP prediction are [6] and [9]. In [6], one-hour
ahead HOEP forecasts have been reported using a

nonlinear neuro-fuzzy model with average MAPEs
varying from 19.83% to 24% with different
configurations of NN and input variables. In [9],
HOEP have been predicted, for the same six-weeks
test period, using three linear models namely ARIMA,
TF and DR. The overall MAPE comparison of
proposed models for the same period has been
presented in Table 6. The MAPE range of proposed
model (PM5) is (15.21 - 18.72) whereas that of
ARIMA, TF, and DR models is 13.6 — 21.5, 12.3 —
18.3 and 13.0 — 19.0 respectively as observed from [9].
Thus, the MAPE range of proposed model (PM35) is
comparable to the existing models. PM5 has been
developed after considering forecasted demand for D-
1 day as well in addition to other variables in Table 4
and PM5-D3 in Table 5. The following points can be
observed from Table 6.

Accuracy of PMS is better than the other models in
Week 1, Week 5 and Week 6. In five out of six weeks
PMS5 performs better than PM4. Overall, accuracy of
PMS5 is better than PM1, PM2, PM3 and PM4, by
29.65%, 13.36%, 3.63% and 4.79% respectively.
Although PM1 looks simple, but it has the capacity to
outperform other complicated models. In Week 2,
PMI has given the best performance. The per-
formance of PM2 is better than the other models in
Week 3.

But these results should be considered in the light
of following points:

PM2 predicts HOEP one hour ahead only since
one- hour pre-dispatch prices have been taken for
comparison. ARIMA, TF and DR models have been
individually identified and estimated for each of the
six weeks [9] and this makes the models somewhat
fragile {2]. On the other hand, in case of PMS the
identical model has been used for the full six weeks
test period. Moreover forecasts by ARIMA, TF and
DR for D- day are available on D-1 day around 11

Table 6. MAPE comparison for the six weeks test pe-

riod.

Test period |Week no.| PM1 | PM2 | PM3 | PM4 | PM5

I\’/gg?gg& Week 1 [21.70 | 23.78 | 16.26 | 16.56 | 15.21
3_9“,“%04 Week 2 | 17.8025.26 | 19.23 | 19.34 | 18.62

Au“g‘ﬁi’tzﬁzm Week 3 |22.92|10.41 [ 17.69 | 17.45 | 17.91
22‘}%‘6554 Week 4 [37.77[16.22[20.55 2027 {18.72

De‘;gf“;ggf' Week 5 | 24.60 | 22.06 | 16.73 | 17.03 | 16.61
Dengnfoegfo' Week 6 | 24.55 | 23.51 | 18.54 | 19.69 | 18.02
Average | 24.89 {2021 | 18.17 | 18.39 | 17.51
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PM. i.e., during last hour of trading on day (D-1)
which is a time after closing of window for
submission of initial bids for D-day. In case of PM5,
the forecasting price is available between 9.30 A.M. to
11 A.M, which is a time before closing of window for
submission of initial bids. Since, in Table 4, variables
P1 to P3 are available on day D-2 and other variables
P4 to P6 have been taken from the second SSR, which
is usually available before 9 AM. on D-1 day for D-
day [12]. One of the principal factors affecting the
accuracy of the forecasting models is the lead-time
and as the lead-time increases, the accuracy of the
forecast deteriorates [31]. The lead-time in case of
PMS is greater than the other works. Moreover, due to
this time differentiation, PMS can be easily utilized
for bidding preparation by the participants, since it
gives forecasts before closing of window for
submission of initial bids.

Considering all these points, performance of model
PMS5 is satisfactory.

7.4. Validation of model PM5

Price forecasting is a complex task as a number of
factors interact in an intricate manner and the
associated uncertainty is very high. A reasonable
forecasting technique can be properly validated if (i)
its accuracy is either comparable or better than the
well accepted methods; (ii) the comparison is based
on the performance on test samples; (iii} the size of
the test samples are adequate, which is two years
[30,31]. Considering these, the comparison of the
accuracy of all the five models was carried out for a
period of two years (July 2003 to June 2005) and has
been given in Table 7.

In this work, PM1 to PM4 have been selected as
benchmark and it can be observed from Table 7 that
PM3 performs better than PM1 and PM2 by 24% and
14.2% respectively. Performance of PMS5 is better
than the linear model PM3 by 2.4% and the ordinary
NN model PM4 by 3.04%. Thus, the performance of
PMS35 is best among all the five models. The detailed
comparison with the other forecasting models could
not be carried out because no case study for price
forecasting in OEM has considered such a long testing
period. In this context, this should also be considered
as a contribution of the present work. Also, reasonable
efficiency gains have been achieved by applying WT
to HOEP series, since performance of PM5 is better
than PM4. All comparison has been made on the basis
of 731 days test sample and is sufficient as it includes
all seasonal, cyclical and other kind of variations like
inflation, state of economy etc.

The other important questions need to be addressed
are: whether the model considers all the important
factors affecting the price and has the bad data
detection and correction capabilities. The answer to
both the questions is yes. Since all the major six

Table 7. MAPE comparison for the two years test pe-
riod.

Test period PMI | PM2 | PM3 | PM4 | PM5

1 July 2003 to 30 June, 2004{32.68(31.27|26.73|26.69(25.92

1 July 2004 to 30 June, 2005|26.85(21.42/19.63|19.96|19.33

Average 29.77|26.35|23.18|23.33|22.62
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k:0] —r— T
---- Predicted HOEP
—— Actusf HOEP
140 {» =
120 -
100 -
w
=)
Q.
i
(=]
T

0 I i ! ) L :
0 24 48 72 9% 126 144 168

Trading Interval

Fig. 9. Weekly predicted HOEP curve during week 1
(April 26 to May 2, 2004).

Weekly graph of HOEP during August 2-8, 2004
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Fig. 10. Weekly predicted HOEP curve during week 4
(August 2-8, 2004).

variables affecting the HOEP have been included in
the model and WT provides the filtration capability.
The ability of the model to predict the turning point
has been shown in Figs. 9 and 10. Although the model
cannot predict the peaks accurately, never the less it
predicts the trend and price movement very well.

The proposed method PMS5 is easier to implement,
utilize publicly available information only and
provide forecast results before bidding time on (D-1)
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day; whereas, PM2 predicts one hour before each
settlement period on D-day. The lead-time in other
works is also smaller than the PMS5. Thus PMS5 gives
sufficient time to the participants to respond and
achieves its objective of practical application.

8. CONCLUSION

In this work, a NN based method for price
forecasting involving application of WT has been
presented. WT has been applied to ill-behaved price
series to convert it into its constitutive series and their
statistical properties are more like a normal distri-
bution curve than the original series and can be
utilized for better prediction. Therefore, input variable
set to the NN consists of variables from original time
domain as well as from wavelet domain. Input
variables other than price and load have also been
considered in formulating the model. The proposed
model (PM5) gives better accuracy than the
benchmark NN model (PM4). It has been shown
empirically that the third level of decomposition of
price series is optimum for accurate forecasting. Since
wavelet domain variables have been used as
additional variables along with time domain variables,
therefore there is no possibility of loss of information.
The proposed model (PMS5) has been also been
compared with a heuristic method (PM1), a model
followed by [ESO (PM2), MLR model (PM3) for a
period of two years. Results of ARIMA, TF and DR
models have also been included for comparison. By
comparing the forecasting performance of all the
models, it can be concluded that the proposed
wavelet-NN based model (PM35) provides better
forecast with reasonable degree of accuracy and since
its forecasts are available before submission of initial
bids, it gives sufficient time to the participants,
especially bulk electricity customers, to respond.
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