DOI QR코드

DOI QR Code

River Stage Forecasting Model Combining Wavelet Packet Transform and Artificial Neural Network

웨이블릿 패킷변환과 신경망을 결합한 하천수위 예측모델

  • Seo, Youngmin (Department of Constructional Environmental Engineering, Kyungpook National University)
  • 서영민 (경북대학교 건설방재공학부 건설환경공학전공)
  • Received : 2015.05.18
  • Accepted : 2015.07.20
  • Published : 2015.08.31

Abstract

A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.

Keywords

References

  1. Adamowski, J., Prasher, S. O., 2012, Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data, J. Water Land Dev., 17, 89-97.
  2. Amiri, G. G., Asadi, A., 2009, Comparison of different methods of wavelet and wavelet packet transform in processing ground motion records, Int. J. Civil Eng., 7(4), 248-257.
  3. Baratti, R., Cannas, B., Fanni, A., Pintus, M., Sechi, G. M., 2003, River flow forecast for reservoir management through neural networks, Neurocomputing, 55(3-4), 421-437. https://doi.org/10.1016/S0925-2312(03)00387-4
  4. Calvo, B., Savi, F., 2009, Real-time flood forecasting of the Tiber river in Rome, Nat. Hazards, 50(3), 461-477. https://doi.org/10.1007/s11069-008-9312-9
  5. Chang, F. J., Chiang, Y. M., Chang, L. C., 2007, Multi-step-ahead neural networks for flood forecasting, Hydrolog. Sci. J., 52(1), 114-130. https://doi.org/10.1623/hysj.52.1.114
  6. Chang, F. J., Hwang, Y. Y., 1999, A self-organization algorithm for real-time flood forecast, Hydrol. Process., 13(2), 123-138. https://doi.org/10.1002/(SICI)1099-1085(19990215)13:2<123::AID-HYP701>3.0.CO;2-2
  7. Chen, P., Chen, H., Ye, R., 2010, Chaotic wind speed series forecasting based on wavelet packet decomposition and support vector regression, Proceedings of IPEC 2010 Conference, Singapore, 256-261.
  8. Cigizoglu, H. K., Kisi, O., 2005, Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data, Nord. Hydrol., 36(1), 49-64.
  9. Dawson, C. W., Wilby, R. L., 2001, Hydrological modelling using artificial neural networks, Prog. Phys. Geogr., 25(1), 80-108. https://doi.org/10.1177/030913330102500104
  10. Deshmukh, R. P., Ghatol, A. A., 2010, Short term flood forecasting using general recurrent neural network modeling a comparative study, Int. J. Comput. Appl., 8(12), 5-9. https://doi.org/10.5120/1259-1777
  11. Duan, Q., Sorooshian, S., Gupta, V. K., 1992, Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), 1015-1031. https://doi.org/10.1029/91WR02985
  12. Fan, X., Zuo, M. J., 2006, Gearbox fault detection using Hilbert and wavelet packet transform, Mech. Syst. Signal Pr., 20, 966-982. https://doi.org/10.1016/j.ymssp.2005.08.032
  13. Gokhale, M. Y., Khanduja, D. K., 2010, Time domain signal analysis using wavelet packet decomposition approach, Int. Commun. Network Syst. Sci., 3(3), 321-329.
  14. Grayson, R. B., Moore, I. D., McMahon, T. A., 1992, Physically based hydrologic modeling: 2. Is the concept realistic?, Water Resour. Res., 28(10), 2659-2666. https://doi.org/10.1029/92WR01259
  15. Gunther, F., Fritsch, S., 2010, Neuralnet: Training of neural networks, R J., 2(1), 30-38.
  16. Jia, Y., Culver, T. B., 2006, Bootstrapped artificial nerual networks for synthetic flow generation with a small data sample, J. Hydrol., 331(3-4), 580-590. https://doi.org/10.1016/j.jhydrol.2006.06.005
  17. Karunasinghe, D. S. K., Liong, S. Y., 2006, Chaotic time series prediction with a global model: artificial neural network, J. Hydrol., 323(1-4), 92-105. https://doi.org/10.1016/j.jhydrol.2005.07.048
  18. Kim, S., Seo, Y., Singh, V. P., 2013a, Assessment of pan evaporation modeling using bootstrap resampling and soft computing methods, J. Comput. Civ. Eng., 1943, DOI:10.1061/(ASCE)CP-5487.0000367.
  19. Kim, S., Shiri, J., Kisi, O., 2012, Pan evaporation modeling using neural computing approach for different climatic zones, Water Resour. Manag., 26(11), 3231-3249. https://doi.org/10.1007/s11269-012-0069-2
  20. Kim, S., Shiri, J., Kisi, O., Singh, V. P., 2013, Estimating daily pan evaporation using different data-driven methods and lag-time patterns, Water Resour. Manag., 27(7), 2267-2286. https://doi.org/10.1007/s11269-013-0287-2
  21. Kisi, O., 2007, Streamflow forecasting using different artificial neural network algorithms, J. Hydrol. Eng., 12(5), 532-539. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(532)
  22. Lei, J., Meyer, Y., Ryan, R. D., 1994, Wavelets: Algorithms & applications, Math. Comput., 63, 822, DOI:http://dx.doi.org/10.2307/2153305.
  23. Liu, H., Tian, H., Pan, D., Li, Y., 2013, Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks, Appl. Energ., 107, 191-208. https://doi.org/10.1016/j.apenergy.2013.02.002
  24. Mishra, A., Hata, T., Abdelhadi, A. W., 2004, Models for recession flows in the upper Blue Nile River, Hydrol. Process., 18(15), 2773-2786. https://doi.org/10.1002/hyp.1322
  25. Nejad, F. H., Nourani, V., 2012, Elevation of wavelet denoising performance via an ANN-based streamflow forecasting model, Int. J. Comput. Sci. Manage. Res., 1(4), 764-770.
  26. Nguyen, P. K. T., Chua, L. H. C., 2012, The data-driven approach as an operational real-time flood forecasting model, Hydrol. Process., 26(19), 2878-2893. https://doi.org/10.1002/hyp.8347
  27. Okkan, U., 2012, Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction, Sci. Res. Essays, 7(17), 1690-1703.
  28. Patel, D., Parekh, D. F., 2014, Flood forecasting using adaptive neuro-fuzzy inference system (ANFIS), Int. J. Eng. Trend. Tech., 12(10), 510-514. https://doi.org/10.14445/22315381/IJETT-V12P295
  29. Raghavendra, N. S., Deka, P. C., 2015, Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid wavelet packet-support vector regression, Cogent Eng., 2(1), DOI:10.1080/23311916.2014.999414.
  30. Ravikumar, K., Tamilselvan, S., 2014, On the use of wavelets packet decomposition for time series prediction, Appl. Math. Sci., 8(58), 2847-2858.
  31. Seo, Y., Kim, S., Kisi, O., Singh, V. P., 2015a, Daily water level forecasting using wavelet decomposition and artificial intelligence techniques, J. Hydrol., 520, 224-243. https://doi.org/10.1016/j.jhydrol.2014.11.050
  32. Seo, Y., Kim, S., Singh, V. P., 2013a, Flood forecasting and uncertainty assessment using bootstrapped ANFIS, Proceedings of 6th Conference of Asia Pacific Association of Hydrology and Water Resources, Seoul, South Korea, 1-8.
  33. Seo, Y., Kim, S., Singh, V. P., 2015b, Multistep-ahead flood forecasting using wavelet and data-driven methods, KSCE J. Civil Eng., 19(2), 401-417. https://doi.org/10.1007/s12205-015-1483-9
  34. Seo, Y., Park, K. B., Kim, S., Singh, V. P., 2013b, Application of bootstrap-based artificial neural networks to flood forecasting and uncertainty assessment, Proceedings of 6th International Perspective on Water Resources and the Environment, EWRI-ASCE, Izmir, Turkey.
  35. Tiwari, M. K., Chatterjee, C., 2010a, Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks(BANNs), J. Hydrol., 382(1-4), 20-33. https://doi.org/10.1016/j.jhydrol.2009.12.013
  36. Tiwari, M. K., Chatterjee, C., 2010b, Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN(WBANN) hybrid approach, J. Hydrol., 394(3-4), 458-470. https://doi.org/10.1016/j.jhydrol.2010.10.001
  37. Wang, W., Van Gelder, P., Vrijling, J. K., Ma, J., 2006a, Forecasting daily streamflow using hybrid ANN models, J. Hydrol., 324(1-4), 383-399. https://doi.org/10.1016/j.jhydrol.2005.09.032
  38. Wang, H. F., Huang, W. J., Wang, W. S., 2006b, Cuntan station of the Yangtze River annual runoff forecasting with set pair analysis method, J. Heilongjiang Hydraul. Eng. Coll., 33(4), 3-5.
  39. Wu, C. L., Chau, K. W., Li, Y. S., 2009, Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques, Water Resour. Res., 45(8), W08432. https://doi.org/10.1029/2007WR006737

Cited by

  1. River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models vol.30, pp.11, 2016, https://doi.org/10.1007/s11269-016-1409-4