• Title/Summary/Keyword: force-feedback

Search Result 554, Processing Time 0.027 seconds

Feedback control design for intelligent structures with closely-spaced eigenvalues

  • Cao, Zongjie;Lei, Zhongxiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.903-918
    • /
    • 2014
  • Large space structures may have resonant low eigenvalues and often these appear with closely-spaced natural frequencies. Owing to the coupling among modes with closely-spaced natural frequencies, each eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned that may cause structural instability. The subspace to an invariant subspace corresponding to closely-spaced eigenvalues is well-conditioned, so a method is presented to design the feedback control law of intelligent structures with closely-spaced eigenvalues in this paper. The main steps are as follows: firstly, the system with closely-spaced eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition method; secondly, the computation for the linear combination of eigenvectors corresponding to repeated eigenvalues is obtained; thirdly, the feedback control law is designed on the basis of the system with repeated eigenvalues; fourthly, the system with closely-spaced eigenvalues is regarded as perturbed system on the basis of the system with repeated eigenvalues; finally, the feedback control law is applied to the original system, the first order perturbations of eigenvalues are discussed when the parameter modifications of the system are introduced. Numerical examples are given to demonstrate the application of the present method.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

Measurement of postural instability before and after experiencing a VR system by using a force platform (힘판을 이용한 가상현실 체험 전후 신체동요의 측정)

  • 박재희;김영윤;김은남;김현택;고희동
    • Science of Emotion and Sensibility
    • /
    • v.5 no.4
    • /
    • pp.45-49
    • /
    • 2002
  • Recently, virtual environment systems are used in various application fields such as industry, medicine, and training and education. However, the negative effect, cybersickness including nausea, visual fatigue, and disorientation, could be happened while using VR systems. It prevents VR system from spreading much more. To control the cybersickness, first of all, the objective measurement method should be established. As one of alternative methods, the postural instability could be a measure of cybersickness. In this study, 45 participants' postural sway before and after experiencing a H driving simulator was measured by using a force platform. Especially, we examined if two factors, motion and feedback, could affect on the postural instability The results showed the postural instability slightly increased after experiencing the VR driving simulator. For the factors, the providing of motion synchronized to visual display showed statistical significant decrease in postural sway along lateral side. To check the effectiveness of postural instability as a cybersickness measure, further studies are needed.

  • PDF

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

Force control of a structurally flexible robotic manipulator

  • 최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.369-373
    • /
    • 1992
  • Force control of a planar two-link structurally flexible robotic manipulator is considered in this study. The dynamic model is obtained by using the extended Hamilton's principle and the Galerkin criterion. A method is pressented toobtain the linearized equations of motion in Cartesian space for use in designing the control system. The approachto solving the control problem is to use feedforward and feedback control torques. The feedforward torques maneuver the flexible manipulatro along a nominal trajectory and the feedback torques minimize any deviations from the nominal trajectory. The linear quadratic Gaussian/loop transfer recovery (LQG/LTR) design methodology is explotied to design a robust feedback control system that can handle modeling errors and sensor noise, and operates on Cartesian space trajectory errors. The Lqg/LTR compenstaor together with a feedforward ollp is used to control the flexible manipulator. Simulated results are presented for a numerical example.

Force Control of Electro-Hydraulic Servo System using Direct Drive Valve for Pressure Control (압력제어용 직동 밸브를 이용한 전기.유압 서보시스템의 힘 제어)

  • Lee C.D.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.14-19
    • /
    • 2004
  • The Direct Drive Valve used in this study contains a pressure-feedback-loop in itself, then it can eliminate nonlinearity such as the square-root-term in flow rate calculation and the change of bulk modulus of hydraulic oil. In this study, assuming that the dynamic characteristic of the DDV is modelled as a first order lag system, an parameter identification method using the input data and the output data is applied to obtain DDV's mathematical model. Then, a state feedback controller was designed to implement the force control of hydraulic system, and the control performance was evaluated.

  • PDF

Yin Yan Approach to Systems Thinking (음양론에 입각한 시스템 사고의 접근)

  • Kim, Dong-Hwan
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.97-107
    • /
    • 2009
  • In this paper, a structural similarity between traditional oriental philosophy and systems thinking is discussed. The polarity of causal relationship and feedback loops can be interpreted in terms of yin and yang of oriental philosophy. A positive feedback loop which is linked to the yang is a force or mechanism that accelerates changes in systems. A negative feedback loop which is linked to the yin can be interpreted as a force oppressing any changes. In this sense, systems thinking can be related to the oriental philosophy. With this linking pin between them, systems thinking can be introduced and educated more friendly in oriental society. Furthermore, systems thinking can get a set of rich insights from the oriental philosophy. This paper suggests a linking leverage between systems thinking and oriental philosophy.

  • PDF

Effect of feedback on PID controlled active structures under earthquake excitations

  • Nigdeli, Sinan Melih
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.217-235
    • /
    • 2014
  • In this paper, different feedback control strategies are presented for active seismic control using proportional-integral-derivative (PID) type controllers. The parameters of PID controller are found by using an numerical algorithm considering time delay, maximum allowed control force and time domain analyses of shear buildings under different earthquake excitations. The numerical algorithm scans combinations of different controller parameters such as proportional gain ($K_p$), integral time ($T_i$) and derivative time ($T_d$) in order to minimize a defined response of the structure. The controllers for displacement, velocity and acceleration feedback control strategies are tuned for structures with active control at the first story and all stories. The performance and robustness of different feedback controls on time and frequency responses of structures are evaluated. All feedback controls are generally robust for the changing properties of the structure, but acceleration feedback control is the best one for efficiency and stability of control system.

Seismic test of modal control with direct output feedback for building structures

  • Lu, Lyan-Ywan
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.633-656
    • /
    • 2001
  • In this paper, modal control with direct output feedback is formulated in a systematic manner for easy implementation. Its application to the seismic protection of structural systems is verified by a shaking table test, which involves a full-scale building model and an active bracing system as the control device. Two modal control cases, namely, one full-state feedback and one direct output feedback control were tested and compared. The experimental result shows that in mitigating the seismic response of building structures, modal control with direct output feedback can be as effective and efficient as that with full-state feedback control. For practical concerns, the control performance of the proposed method in the presence of sensor noise and stiffness modeling error was also investigated. The numerical result shows that although the control force may be increased, the maximum floor displacements of the controlled structure are very insensitive to sensor noise and modeling error.

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF