• Title/Summary/Keyword: force standard

Search Result 866, Processing Time 0.025 seconds

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

Development of Sensory Feedback System for Myoelectric Prosthetic Hand (전동의수 사용자를 위한 감각 측정 및 전달 시스템 개발)

  • Bae, Ju-Hwan;Jung, Sung Yoon;Kim, Shinki;Mun, Museong;Ko, Chang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2015
  • This study aimed to develop a sensory feedback system which could measure force and temperature for the user of myoelectric prosthetic hands. The Sensory measurement module consisted of a force sensing resistor to measure forces and non-contact infrared temperature sensor. These sensors were attached on the fingertips of the myoelectric prosthetic hand. The module was validated by using standard weights corresponding to external force and a Peltier module. Sensory transmission module consisted of four vibration motors. Eight vibration patterns were generated by combining motion of each vibration motor and were dependent on kinds and/or magnitude. The module was verified by using standard weigts and water at varying temperatures. There were correlations of force and temperature between the sensory measurement module and standard weight and water. Additionally, exact vibration patterns were generated, indicating the efficacy of the sensory feedback system for the myoelectric prosthetic hand.

A Study of Electrical Control Kit for Damping Force of Automotive Shock Absorber (자동차 충격흡수장치용 감쇠력 조정 전자제어장치 연구)

  • Sohn, Il-Seon;Lee, Jeong-Goo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The performance of shock absorber is directly related to the car behavior and performance, both for handling and comfort. Most of compact car are assembled the passive shock absorber for cost effect but some of compact driver want better performance of shock absorber than standard parts. Therefore, they want the semi-active suspension control system instead of standard damper system. But they only can change the mechanical damping control shock absorber at A/S market. The mechanical damping control shack absorber can not vary the damping force in driving condition so they do not satisfy the mechanical damping control shock absorber system. In this study, electrically damping force controlled shock absorber system is developed based on the mechanical damping force control damper system. This system can vary damping force by switch on dashboard in driving condition. And, this system can satisfy the requirement of tuning market. Therefore, it is expected the system to show the engineering capability of korean damper company and to increase export market share to oversea damper market.

The Joining Quality of High Strength Bolt, Nut and Washer Set (S10T & 10.9HRC) under the Surface Treatment Conditions (표면처리별 S10T, 10.9HRC 고장력 볼트 세트의 체결 품질 연구)

  • Choi, Youn-O;Suk, Han-Gil;Hong, Hyeon-Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • This test focuses on the correlations between joining axial force at non-room temperature and at room temperature according to the surface treatment (Geomet, Dacro, Green Kote, Armore Galv.). The quality characteristics of the fastening axial force required by the KSB 2819 and EN14399-10 standards were discussed. Surface treatment was implemented to S10T and 10.9HRC sets of bolts under the same environmental factors. Development for the stabilization of the fastening axial force required by each standard should continually be enforced, and the fastening and storage in the field should be maintained at room temperature. Managing stabilization of torque enumerated data is required after application of surface treatment. It is concluded that, by conducting the test of applying surface treatment to effectively manage, each lot-specific rate of axial force at room temperature conditions should be maintained below the maximum 4.47%. The decline rate of axial force should be maintained under 2.15% maximum, and the standard deviation of the room temperature condition should be maintained below 0.5.

Study on The Suggested Curve Fitting Algorithm for Bolt Clamping Force Measurement (볼트 체결력 측정을 위해 제안한 커브피팅 알고리즘에 관한 연구)

  • Lee, Ki-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.94-98
    • /
    • 2012
  • In order to serve the exact torque clamping force, the torque measurement system use the curve fitting algorithm by the least square. The corrected least square curve fitting algorithm which suggested in this paper can surpport more exact clamping force for fastner in variable industry field using the torque. At first, This paper introduces mathematical modeling for curve fitting algorithm, and simulate it. As a result, the corrected least square algorithm have shown lower standard error value than that of the used algoritm with torque, and so this corrected least square algorithm prove high accuracy than nomal least square algorithm. The suggested algorithm will contribute to improvement of cost and safety on industry field with bolt clamping force for precision industry parts, electronics parts, aircraft, aerospace, etc.

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

VERIFICATION OF TURBULENCE AND NON-DRAG INTERFACIAL FORCE MODELS OF A COMPUTATIONAL MULTI-FLUID DYNAMICS CODE (CMFD 코드의 난류 모델 및 비견인력 모델의 검증 계산)

  • Park, Ik Kyu;Chun, Kun Ho
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.99-108
    • /
    • 2013
  • The standard drag force and virtual mass force, which exert to the primary flow direction, are generally considered in two-phase analysis computational codes. In this paper, the lift force, wall lubrication force, and turbulent dispersion force including turbulence models, which are essential for a computational multi-fluid dynamics model and play an important role in motion perpendicular to the primary flow direction, were introduced and verified with conceptual problems.

Protective System from Medical Needle-sticks. Part II: Evaluation of Woven Structures and Bifid Needles

  • Seyam, Abdelfattah M.;Turner, LaDawnya C.;Banks-Lee, Pamela
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.129-134
    • /
    • 2003
  • We have shown in Part I [1] of this study that medical needle-stick injuries are causing serious health problems to healthcare personnel and other professionals that require the attention of healthcare and textile researchers to develop new protective systems. Responding to such need, a needle force measurement device that is capable of measuring dynamic forces experienced by medical needles during needle penetration through protective articles was developed and described in part I. This paper reports the results of evaluation of protective woven fabrics from high performance fibers and standard and bifid medical needles using the force measurement system. The woven fabrics varied in cover factor, number of layers, and orientation angle. Standard and bifid needles with different gap widths were used to evaluate the resistance of the fabric to needle penetration.