• Title/Summary/Keyword: force sensing

Search Result 349, Processing Time 0.043 seconds

Adaptive Cutting force Control of 2Axes (절삭 공정의 2축 적응제어)

  • 조광섭;우중원;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.653-657
    • /
    • 1996
  • This paper presents adaptive cutting force control in milling process using indirect cutting force measurement. The cutting forces in X, Y, and Z axes are measured indirectly from the sensing current of the feed-drive servo motor. After modelling the feed-drive system of a horizontal machining center, the relation between the cutting force and the servo motor current is analyzed. The pulsating milling forces are measured from the sensing current within the bandwidth of the servo. It is shown that indirect cutting farce measurement can be used in adaptive cutting force control. The adaptive control scheme which is globally convergent and stable is attached to a commercial CNC machining center. Cutting experiments on end milling are performed for diagonal cutting.

  • PDF

Design of sensing .element of bio-mimetic tactile sensor for measurement force and temperature (힘과 온도 측정을 위한 생체모방형 촉각센서 감지부 설계)

  • 김종호;이상현;권휴상;박연규;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1029-1032
    • /
    • 2002
  • This paper describes a design of a tactile sensor, which can measure three components force and temperature due to thermal conductive. The bio-mimetic tactile sensor, alternative to human's finger, is comprised of four micro force sensors and four thermal sensors, and its size being 10mm$\times$10mm. Each micro force sensor has a square membrane, and its force range is 0.1N - 5N in the three-axis directions. On the other hand, the thermal sensor for temperature measurement has a heater and four temperature sensor elements. The thermal sensor is designed to keep the temperature. $36.5^{\circ}C$, constant, like human skin, and measure the temperature $0^{\circ}C$ to $50^{\circ}C$. The MEMS technology is applied to fabricate the sensing element of the tactile sensor.

  • PDF

Development of a 6-axis Robotic Base Platform with Force/Moment Sensing (힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발)

  • Jung, Sung Hun;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

A Study on Gripper Force Control Of Manipulator Using Tactile Image (Tactile 영상을 이용한 매니퓰레이터의 그리퍼 힘제어에 관한 연구)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.64-70
    • /
    • 1999
  • When manipulator moves the objects, the object position error can be occurred because of acceleration or negative acceleration according to the direction. So we make manipulator working path for establishing optimal gripper force control preventing occurrence of object position error. And we attached the tactile sensor on the gripper of manipulator which gives us very specific information between manipulator and object. Reasoning of continuous tactile image data, manipulator can sense rotation and slippage and change the grasping force that corrects calculated grasping force and compensation can be possible of the object position error. We use the FSR(Force Sensing Resistor)sensor which consists of 22 by 22 taxels and continuous taxel number is used for filtering and using the moment method for sensing algorithm in our experiment.

  • PDF

Development of 6-axis force/moment sensor for an intelligent robot's foot (지능형 로봇 발을 위한 6 축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun;Hu, Duk-Chan;Yoon, Jung-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1097-1102
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for an intelligent robot's foot. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself. The applied forces and moments should be measured from a 6-axis force/moment sensor attached to a humanoid robot's foot(ankle). They in the published paper already have some disadvantage in the size of the sensor, the rated output and so on. The rated output of each component sensor (6-axis force/moment sensor) is very important to design the 6-axis force/moment sensor for precision measurement. Therefore, each sensor should be designed to be gotten similar the rated output under each rated load. So, the sensing elements of the 6-axis force/moment sensor should get lots of design variables. Also, the size of 6- axis force/moment sensor is very important for mounting to robot's foot. In this paper, a 6-axis force/moment sensor for perceiving forces and moments in a humanoid robot's foot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing elements (plate-beams) of the sensor were designed using FEM (Finite Element Method) analysis. Then, the 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from FEM analysis agree well with that from the characteristic test.

  • PDF

Cellular Force Measurement for Force Feedback-Based Biomanipulation (힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정)

  • Kim, Duk-Ho;Kim, Byung-Kyu;Yoon, Seok;Kang, Hyun-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF

Study on the Stability of Force Control using a 6-axis Compliance Device with F/T Sensing (F/T측정 기능을 갖는 6축 순응장치를 이용한 힘제어 안정성 연구)

  • Gi-Seong Kim;Sung-Hun Jeong;Han-Sung Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.211-215
    • /
    • 2023
  • In this paper, the stability and effectiveness of the force control with a 6-axis compliance device are verified by performing comparative experiments with a commercial F/T sensor. The position/force control algorithm based on the Cartesian stiffness of a compliance device is briefly introduced and the design result of a 6-axis compliance device with F/T sensing is presented. The comparative experiments show that the force control using a compliance device is much more stable than that with rigid F/T sensor due to the enough compliance of a compliance device larger than robot positional resolution.

Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing (미지 물체의 구속상태에 관한 실시간 추정방법)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

A Study on Functional Characteristics of Electrolarynx "Evada" Using Force Sensing Resistor(FSR) Sensor (Force Sensing Resistor(FSR) Sensor를 이용한 전기인공후두 "Evada"의 기능적 특성에 대한 연구)

  • 박용재;최홍식;이주형;이성민;김광문
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.1
    • /
    • pp.11-16
    • /
    • 1998
  • Background and Objectives : Electrolarynx has been used as one of the methods of rehabilitation for the laryngectomees. Previous electrolarynx could not alter frequency and intensity simultaneously. This institute developed an electrolarynx named "Evada" using FSR(force sensing resistor) sensor, which can control the frequency(and/or intensity) simultaneously. This study was performed for the normal control and laryngectomees with three types of electrolarynx (Evada, Servox-inton, Nu-vois) to reveal functional characteristics of Evada Materials and Methods : five laryngectomees and five normal adults were made to express there sentences(discriptive sentence, "You stay here" ; question sentence, "You stay here?" ; exclamation sentence, "You!! stay here!"), using three types of electrolarynx. Frequency change and intensity change from first and last vowel was calculated in three sentences and analyzed statistically by paired T-test. Results : The frequency change in the question sentence and exclamation sentence was more prominent in Evada than in Servox-inton and Nu-vois. The intensity change in the question sentence and exclamation sentence was also more prominent in Evada than in Servox-inton and Nu-vois. Conclusions : Evada could control frequency and intensity simultaneously and control degree of frequency(and/or intensity) according to the pressing force into the button. Evada could adjust continuously frequency and intensity during conversation. So, Evada is better in producing intonation and contrastive stress than Nu-vois and Servox-inton.

  • PDF