DOI QR코드

DOI QR Code

Development of a 6-axis Robotic Base Platform with Force/Moment Sensing

힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발

  • Jung, Sung Hun (Dept, of Mechanical Convergence Engineering, Kyungnam University) ;
  • Kim, Han Sung (Dept, of Mechanical Engineering, Kyungnam University)
  • 정성훈 (경남대학교 기계융합공학과) ;
  • 김한성 (경남대학교 기계공학부)
  • Received : 2019.03.28
  • Accepted : 2019.05.28
  • Published : 2019.06.30

Abstract

This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

Keywords

SOOOB6_2019_v22n3_315_f0001.png 이미지

Fig. 1 6-axis robotic base platform

SOOOB6_2019_v22n3_315_f0002.png 이미지

Fig. 2 Geometry of a robotic base platform

SOOOB6_2019_v22n3_315_f0003.png 이미지

Fig. 3 Block diagram of the 6-axis force/moment measurement

SOOOB6_2019_v22n3_315_f0004.png 이미지

Fig. 4 System configuration of the robotic base platform

SOOOB6_2019_v22n3_315_f0005.png 이미지

Fig. 5 Calibration program using Simulink and xPC

SOOOB6_2019_v22n3_315_f0006.png 이미지

Fig. 6 Force/moment measurement experiment setup

SOOOB6_2019_v22n3_315_f0007.png 이미지

Fig. 7 Joint calibration experiment of loadcell #1

SOOOB6_2019_v22n3_315_f0008.png 이미지

Fig. 8 Cartesian calibration experiment of the base platform

SOOOB6_2019_v22n3_315_f0009.png 이미지

Fig. 9 External wrench detection algorithm

SOOOB6_2019_v22n3_315_f0010.png 이미지

Fig. 10 Modeling of link masses of a 6-DOF robot

SOOOB6_2019_v22n3_315_f0011.png 이미지

Fig. 11 Kinematic model of a 6-DOF robot

SOOOB6_2019_v22n3_315_f0012.png 이미지

Fig. 13 Measured and calculated wrench along x-axis

SOOOB6_2019_v22n3_315_f0013.png 이미지

Fig. 12 Measurement experiment of a 6-DOF robot arm mounted on the base platform

SOOOB6_2019_v22n3_315_f0014.png 이미지

Fig. 14 Measured and calculated wrench along y-axis

SOOOB6_2019_v22n3_315_f0015.png 이미지

Fig. 15 Measured and calculated wrench along z-axis

SOOOB6_2019_v22n3_315_f0016.png 이미지

Fig. 16 Trajectory planning of a 6-DOF robot

SOOOB6_2019_v22n3_315_f0017.png 이미지

Fig. 17 Comparison of $w^{m}_B$ with $w^{c}_R$

Table 1. Design parameters of a Robotic Base Platform

SOOOB6_2019_v22n3_315_t0001.png 이미지

Table 2. Max. force/moment measurement range

SOOOB6_2019_v22n3_315_t0002.png 이미지

Table 3. Joint calibration result of loadcells

SOOOB6_2019_v22n3_315_t0003.png 이미지

Table 4. Cartesian calibration result of the base platform

SOOOB6_2019_v22n3_315_t0004.png 이미지

Table 5. Link masses of a 6-DOF robot

SOOOB6_2019_v22n3_315_t0005.png 이미지

Table 6. D-H Parameters of a 6-DOF robot

SOOOB6_2019_v22n3_315_t0006.png 이미지

Table 7. Max. wrench error between $w^{m}_B$ and $w^{c}_R$

SOOOB6_2019_v22n3_315_t0007.png 이미지

References

  1. Haddadin, S., Luca, A. D., Albu-Schaffer, A. 2017. Robot collisions: A survey on detection, isolation, and identification. IEEE Transactions on Robotics. VOL. 33, NO. 6, pp. 1292-1312. https://doi.org/10.1109/TRO.2017.2723903
  2. Haddadin, S., Albu-Schaffer, A., Hirzinger, G. 2010. Safety Analysis for a Human-Friendly Manipulator. Int J Soc Robot 2: 235-252. https://doi.org/10.1007/s12369-010-0053-z
  3. Zinn, M., Khatib, O., Roth, B. 2004. A New Actuation Approach for Human Friendly Robot Design. The International Journal of Robotics Research, Vol. 23, No. 4-5, April-May, pp 379-398. https://doi.org/10.1177/0278364904042193
  4. West, H., Papadopoulos, E., Dubowsky, S., Cheah, H. 1989. A Method For Estimating The Mass Properties Of A Manipulator By Measuring The Reaction Moments At Its Base. IEEE International Conference on Robotics & Automation. Scottsdale, USA, pp. 1510-1516.
  5. Hirzinger, G., Albu-Schaffer, A., Hahnle, M., Schaefer, I., Sporer, N. 2001. On a New Generation of Torque Controlled Light-Weight Robots. IEEE International Conference on Robotics & Automation Seoul, Korea, May 21-26.
  6. Li, Y. F., Chen, X.B. 1998. On the Dynamic Behavior of a Force/Torque Sensor for Robots. IEEE Transactions on Instrumentation and measurement, Vol. 47, No. 1, February.
  7. Kim, H. S. 2018. Design of a 6-axis Compliance Device with F/T Sensing for Position/Force Control. Journal of the Korean Society of Industry Convergence.
  8. Morel, G., Dubowsky, S. 1996. The Precise Control Of Manipulator With Joint Friction : A Base Force/Torque Sensor Method. IEEE International Conference on Robotics & Automation. Minneapolis, Minnesota, pp. 360-365.
  9. Iagnemma, K., Morel, G., Dubowsky, S. 1997. A Model-Free Fine Position Control Method Using The Base-Sensor: With Application To A Hydraulic Manipulator. IFAC Robot Control. Nantes, France, pp. 339-345.
  10. Kim, H. S. 2019. 6-aixs BasePlatform Device With Force/Moment Sensing Capability. KR10-1952043.
  11. Tsai, L. W. 1999. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, Inc.