• Title/Summary/Keyword: footing settlement

Search Result 78, Processing Time 0.018 seconds

Bearing Capacity of Shallow Foundation on a Finite Layer of Sandy Ground Underlain by a Rigid Base (강성저면위 유한한 두께의 모래지반에 놓인 얕은기초의 지지력)

  • Jun, Sang-Hyun;Yoo, Nam-Jae;Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.39-48
    • /
    • 2011
  • In this paper the method of estimating the bearing capacity of shallow foundation on a finite layer of sandy ground underlain by a rigid base was proposed by assessing results of the model test and the numerical analyses. For model experiments, the centrifuge tests under 1g and 20 g of gravitational levels were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sand layer (H) to the width of strip footing (B). As results of tests, bearing capacity tends to increase with the value of H/B while settlement for a given load intensity decreases. Bearing capacity also increases with relative density of the soil. In order to propose the method of estimating the bearing capacity of thin sandy layer underlain by a rigid base, values of bearing capacity factors from test results were compared with the values of modified bearing capacity factor by Mandel & Salencon (1972) considering the effect of H/B value on bearing capacity. The relation of bearing capacity factor ratio, normalizing friction angle of sandy soil, with the value of H/B was suggested so that this relation could be applied to design in the safe side. The results of numerical analyses obrained by changing the layout of footing, relative density of sandy soil and the value of H/B, were in good agreements with the suggested relation.

Bearing Capacity of Shallow Foundation on Geosynthetic Reinforced Sand (토목섬유로 보강된 얕은기초 모래지반의 지지력)

  • Won Myoung-Soo;Ling Hoe I.;Kim You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.107-117
    • /
    • 2004
  • A series of model tests were conducted to investigate how the number of reinforcement layers, stiffnesses, types of reinforcement material and buried depth of a flexible pipe can affect bearing capacity-settlement curve at a loose sand foundation. In the test results, whereas the type of failure in unreinforced sand was local shear, the type of failure, for model tests with more than 2 reinforcement layers in loose sand, was general shear: The number of the optimum reinforcement layers was found to be two: Stiffness and type of reinforcement were more important than the maximum tensile strength of reinforcement in improving bearing capacity. When the depth of buried pipe from the sand surface was less than the width of the footing, test results showed that both bearing capacity and ultimate bearing capacity of buried pipe in unreinforced sand significantly decreased, and the type of failure in the reinforced sand changed from general shear to local shear.

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

A Study on the Probabilistic Analysis Method Considering Spatial Variability of Soil Properties (지반의 공간적 변동성을 고려한 확률론적 해석기법에 관한 연구)

  • Cho, Sung-Eun;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.111-123
    • /
    • 2008
  • Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of soil properties is presented to study the response of spatially random soil. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two-dimensional non-Gaussian random fields are generated based on a Karhunen-$Lo{\grave{e}}ve$ expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to study the effects of uncertainty due to the spatial heterogeneity on the settlement and bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to the geotechnical problem and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment.

Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations

  • Mukhtiar Ali Soomro;Dildar Ali Mangnejo;Naeem Mangi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.251-265
    • /
    • 2023
  • In urban construction projects, it is crucial to evaluate the impacts of excavation-induced ground movements in order to protect surrounding structures. These ground movements resulting in damages to the neighboring structures and facilities (i.e., parking basement) are of main concern for the geotechnical engineers. Even more, the danger exists if the nearby structure is an ancient or masonry brick building. The formations of cracks are indicators of structural damage caused by excavation-induced ground disturbances, which pose issues for excavation-related projects. Although the effects of deep excavations on existing brick masonry walls have been thoroughly researched, the impact of twin excavations on a brick masonry wall is rarely described in the literature. This work presents a 3D parametric analysis using an advanced hypoplastic model to investigate the responses of an existing isolated brick masonry wall to twin perpendicular excavations in dry sand. One after the other, twin perpendicular excavations are simulated. This article also looks at how varying sand relative densities (Dr = 30%, 50%, 70%, and 90%) affect the masonry wall. The cracks at the top of the wall were caused by the hogging deformation profile caused by the twin excavations. By raising the relative density from 30% to 90%, excavation-induced footing settlement is greatly minimized. The crack width at the top of the wall reduces as a result of the second excavation in very loose to loose sand (Dr = 30% and 50%). While the crack width on the top of the wall increases owing to the second excavation in medium to very dense sand (Dr = 70% and 90%).

Characteristics of Bearing Capacity under Square Footing on Two-layered Sand (2개층 사질토지반에서 정방형 기초의 지지력 특성)

  • 김병탁;김영수;이종현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.289-299
    • /
    • 2001
  • 본 연구는 균질 및 2개층 비균질지반에서 사질토지반 상에 놓인 정방형 기초의 극한지지력과 침하에 대하여 고찰하였다. 본 연구는 얕은기초의 거동에 대한 정방형 기초의 크기, 지반 상대밀도, 기초 폭에 대한 상부층의 두께 비(H/B), 상부층 아래 경계면의 경사($\theta$) 그리고 지반강성비의 영향을 규명하기 위하여 모형실험을 수행하였다. 동일 상대밀도에서 지지력 계수($N_{{\gamma}}$)는 일정하지 않으며 기초 폭에 직접적으로 관련되며 지지력계수는 기초 폭이 증가함에 따라 감소하였다. 기초크기의 영향과 구속압력의 영향을 고려하는 Ueno 방법에 의한 극한지지력의 예측값은 고전적인 지지력 산정식보다 더 잘 일치하며 그 값은 실험값의 65% 이상으로 나타났다. $\theta$=$0^{\circ}$인 2개층 지반의 결과에 근거하여, 극한지지력에 대한 하부층 지반의 영향을 무시할 수 있는 한계 상부층 두께는 기초 폭의 2배로 결정되었다. 그러나, 73%의 상부층 상대밀도인 경우는 침하비($\delta$B) 0.05 이하에서만 이 결과가 유효하였다. 경계면이 경사진 2개층 지반의 결과에 근거하여, 상부층의 상대밀도가 느슨할수록 그리고 상부층의 두께가 클수록 극한지지력에 대한 경계면 경사의 영향은 크지 않는 것으로 나타났다. 경계면의 경사가 증가함에 따른 극한침하량의 변화는 경계면이 수평인 경우($\theta$=$0^{\circ}$)를 기준으로 0.82~1.2(상부층 $D_{r}$=73%인 경우) 그리고 0.9~1.07(상부층 $D_{r}$=50%인 경우) 정도로 나타났다.Markup Language 문서로부터 무선 마크업 언어 문서로 자동 변환된 텍스트를 인코딩하는 경우와 같이 특정한 응용 분야에서는 일반 문자열에 대한 확장 인코딩 기법을 적용할 필요가 있을 수 있다.mical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes. the RSC circle, but also to the logistics system in the SLC circle. Thus, the RSLC model can maximize combat synergy effects by integrating the RSC and the SLC. With a similar logic, this paper develops "A Revised System of Systems with Logistics (RSSL)" which combines "A New system of Systems" and logistics. These tow models proposed here help explain several issues such as logistics environment in future warfare, MOE(Measure of Effectiveness( on logistics performance, and COA(Course of Actions) for decreasing mass and increasing velocity. In particular, velocity in logistics is emphasized.

  • PDF

An Experimental Study on Optimum Slanting Angle in Reticulated Root Piles Installation (그물식 뿌리말뚝의 최적 타설경사각에 관한 실험 연구)

  • 이승현;김병일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • Load testis are executed on model reticulated root piles (RRP) to figure out the optimum slanting angle in the piles installation. One set of model RRP consists of 8 slanting piles which are installed in circular patterns forming two concentric circles, each of which is made by 4 piles. Each pile which is a steel bar of 5m in diameter and 300mm in length is coated to become a pile of 6.5mm in diameter. The slanting angle of the model RRP varies from 0$^{\circ}$ to 20$^{\circ}$ Comparing ultimate bearing capacities of the model RRP of different installation angles, it is observed that the ultimate capacities of the RRP increase as the installation angle increases until 15$^{\circ}$, and the optimum slanting angle of the RRP is around 15$^{\circ}$ The ultimate bearing capacity of the 15$^{\circ}$-RRP is found to be 22% bigger than that of the vertical RRP and 120% bigger than that of the circular surface footing whose diameter is same with the circle formed by outer root piles'heads. However, it is noticed that when the slanting angle of the RRP is increased over 15$^{\circ}$, the ultimate capacity starts to be reduced. The ultimate capacity of 20$^{\circ}$-RRP is even smaller than that of the vertical RRP by as much as 5%. From the observation of the load settlement curve obtained during the RRP load tests, it is known that as the slanting angle gets bigger the load -settlement behavior becomes more ductile.

  • PDF