DOI QR코드

DOI QR Code

Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations

  • Mukhtiar Ali Soomro (School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Dildar Ali Mangnejo (Department of Civil Engineering, Mehran University of Engineering and Technology, Shaheed Zulfiqar Ali Bhutto Campus) ;
  • Naeem Mangi (Department of Civil Engineering, Quaid-e-Awam University of Engineering, Science & Technology)
  • Received : 2023.02.11
  • Accepted : 2023.06.23
  • Published : 2023.08.10

Abstract

In urban construction projects, it is crucial to evaluate the impacts of excavation-induced ground movements in order to protect surrounding structures. These ground movements resulting in damages to the neighboring structures and facilities (i.e., parking basement) are of main concern for the geotechnical engineers. Even more, the danger exists if the nearby structure is an ancient or masonry brick building. The formations of cracks are indicators of structural damage caused by excavation-induced ground disturbances, which pose issues for excavation-related projects. Although the effects of deep excavations on existing brick masonry walls have been thoroughly researched, the impact of twin excavations on a brick masonry wall is rarely described in the literature. This work presents a 3D parametric analysis using an advanced hypoplastic model to investigate the responses of an existing isolated brick masonry wall to twin perpendicular excavations in dry sand. One after the other, twin perpendicular excavations are simulated. This article also looks at how varying sand relative densities (Dr = 30%, 50%, 70%, and 90%) affect the masonry wall. The cracks at the top of the wall were caused by the hogging deformation profile caused by the twin excavations. By raising the relative density from 30% to 90%, excavation-induced footing settlement is greatly minimized. The crack width at the top of the wall reduces as a result of the second excavation in very loose to loose sand (Dr = 30% and 50%). While the crack width on the top of the wall increases owing to the second excavation in medium to very dense sand (Dr = 70% and 90%).

Keywords

Acknowledgement

The authors would like to acknowledge the financial support provided by China University of Mining and Technology, Xuzhou, China.

References

  1. Abdulla, K.F., Cunningham, L.S. and Gillie, M. (2017), "Simulating masonry wall behaviour using a simplified micromodel approach", Eng. Struct., 151, 349-365. https://doi.org/10.1016/j.engstruct.2017.08.021
  2. Atkinson, J.H., Richardson, D. and Stallebrass, S.E. (1990), "Effect of recent stress history on the stiffness of over consolidated soil", Geotechnique, 40(4), 531-540. https://doi.org/10.1680/geot.1990.40.4.531.
  3. Basmaji, B., Deck, O. and Al Heib, M. (2019), "Analytical model to predict building deflections induced by ground movements", Eur. J. Environ. Civil Eng., 23(3), 409-431. https://doi.org/10.1080/19648189.2017.1282382.
  4. Bejarano-Urrego, L., Verstrynge, E., Giardina, G. and Van Balen, K. (2018), "Crack growth in masonry: Numerical analysis and sensitivity study for discrete and smeared crack modelling", Eng. Struct., 165, 471-485. https://doi.org/10.1016/j.engstruct.2018.03.030.
  5. Bolhassani, M., Hamid, A.A., Lau, A.C. and Moon, F. (2015), "Simplified micro modeling of partially grouted masonry assemblages", Constr. Build. Mater., 83, 159-173. https://doi.org/10.1016/j.conbuildmat. 2015.03.021.
  6. Chen, P., Wang, W.D. and Ding, J.F. (2013), "Design and application of synchronous construction of two neighboring deep excavations", Chinese J. Geotech. Eng., 35(2), 555-558.
  7. Dong, Y., Burd, H.J. and Houlsby, G.T. (2017), "Finite element study of deep excavation construction processes", Soils Found., 57(6), 965-979. https://doi.org/10.1016/j.sandf.2017.08.024.
  8. Ding, Z., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/10.12989/gae.2017.12.2.185.
  9. El Sawwaf, M. and Nazir, A.K. (2012), "The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand", J. Adv. Res., 3(4), 337-344. https://doi.org/10.1016/j.jare.2011.11.001.
  10. Ghahreman, B (2004), "Analysis of ground and building response around deep excavation in sand", Ph. D. Thesis, Department of civil eng., University of Illinois
  11. Giardina, G., Hendriks, M.A. and Rots, J.G. (2010), "Numerical analysis of tunnelling effects on masonry buildings: the influence of tunnel location on damage assessment", Adv. Mater. Res., 133, 289-294. https://doi.org/10.4028/www.scientific.net/AMR.133-134.289.
  12. Giardina, G., Marini, A., Hendriks, M.A., Rots, J.G., Rizzardini, F. and Giuriani, E. (2012), "Experimental analysis of a masonry facade subject to tunnelling-induced settlement", Eng. Struct., 45, 421-434. https://doi.org/10.1016/j.engstruct.2012.06.042.
  13. Giardina, G., Van de Graaf, A.V., Hendriks, M.A., Rots, J.G. and Marini, A. (2013), "Numerical analysis of a masonry facade subject to tunnelling-induced settlements", Eng. Struct., 54, 234-247. https://doi.org/10.1016/j.engstruct.2013.03.055.
  14. Giardina, G., Hendriks, M.A. and Rots, J.G. (2015), "Sensitivity study on tunnelling induced damage to a masonry facade", Eng. Struct., 89, 111-129. https://doi.org/10.1016/j.engstruct.2013.03.055.
  15. Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.
  16. Halim, D. and Wong, K.S. (2012), "Prediction of frame structure damage resulting from deep excavation", J. Geotech. Geoenviron. Eng., 138(12), 1530-1536. DOI:10.1061/(asce)gt.1943-5606.0000682.
  17. Hashemi, H., Naeimifar, I., Uromeihy, A. and Yasrobi, S. (2015), "Evaluation of rock nail wall performance in jointed rock using numerical method", Geotech. Geol. Eng., 33(3), 593-607. https://doi.org/10.1007/s10706-015-9842-3.
  18. Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mechanics of Cohesive-frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 4(5), 461-486. https://doi.org/10.1002/(sici)10991484(199909)4:5%3C461::aid-cfm71%3E3.0.co;2-p.
  19. Hibbitt, Karlsson, Sorensen, (2010), Abaqus user's manual, version 6.10.2. Hibbitt, Karlsson & Sorensen Inc;, Providence, RI, USA.
  20. Hong, Y. and Ng, C.W. (2013), "Base stability of multi-propped excavations in soft clay subjected to hydraulic uplift", Can. Geotech. J., 50(2), 153-164. https://doi.org/10.1139/cgj-2012-0170
  21. Hong, Y., Koo, C.H., Zhou, C., Ng, C.W. and Wang, L.Z. (2017), "Small strain path-dependent stiffness of Toyoura sand: Laboratory measurement and numerical implementation", Int. J. Geomech., 17(1), 04016036. https://doi.org/10.1061/(asce)gm.1943-5622.0000664.
  22. Hsiung, B.C.B. (2009), "A case study on the behaviour of a deep excavation in sand", Comput. Geotech., 36(4), 665-675. https://doi.org/10.1016/j.compgeo.2008.10.003.
  23. Jamil, I. and Ahmad, I. (2019), "Bending moments in raft of a piled raft system using Winkler analysis", Geomech. Eng., 18(1), 41-48. https://doi.org/10.12989/gae.2019.18.1.041.
  24. Jaky J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Arch. Eng., 355-358. [in Hungarian].
  25. Karira, H., Kumar, A., Ali, T.H., Mangnejo, D.A. and Mangi, N. (2022), "A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis", Geomech. Eng., 30(2), 169-185. https://doi.org/10.12989/gae.2022.30.2.169.
  26. Lasciarrea, W.G., Amorosi, A., Boldini, D., de Felice, G. and Malena, M. (2019), "Jointed masonry model: A constitutive law for 3D soil-structure interaction analysis", Eng. Struct., 201, 109803. https://doi.org/10.1016/j.engstruct.2019.109803.
  27. Lin, H.D., Truong, H.M., Dang, H.P. and Chen, C.C. (2014), "Assessment of 3D excavation and adjacent building's reponses with consideration of excavation-structure interaction", Tunn. Undergr. Constr., 256-265. https://doi.org/10.1061/9780784413449.026.
  28. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413
  29. Maeda, K. and Miura, K. (1999), "Relative density dependency of mechanical properties of sands", Soils Found., 39(1), 69-79. https://doi.org/10.3208/sandf.39.69.
  30. Mu, L., Huang, M., Roodi, G.H. and Shi, Z. (2021), "Allowable wall deflection of braced excavation adjacent to pile-supported buildings", Geomech. Eng., 26(2), 161-173. https://doi.org/10.12989/gae.2021.26.2.161.
  31. Minh TH (2013), "Study of excavation behavior and adjacent building response with 3D simulation", Doctoral dissertation, Master dissertation, National Taiwan University of Science and Technology.
  32. Naeimifar, I., Yasrobi, S., Golshani, A.A. and Joneidi, M. (2021), "Damage estimation in masonry buildings based on excavation-induced ground movements", Geotech. Geol. Eng., 1-21. https://doi.org/10.1007/s10706-021-01757-4.
  33. Nela, B. and Grajcevci, F. (2019), "Numerical approach: fem testing of masonry specimens with different bond configurations of units", Proceedings of the Congresso de Metodos Numericos em Engenharia1-3 julho 2019, Guimaraes, Portugal Universidade do Minho, 1-17.
  34. Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mechanics of Cohesive-frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8.
  35. Ng, C.W.W., Hong, Y., Liu, G.B. and Liu, T. (2012), "Ground deformations and soil-structure interaction of a multi-propped excavation in Shanghai soft clays", Geotechnique, 62(10), 907-921. https://doi.org/10:1680/geot.10.P.072. 10:1680/geot.10.P.072
  36. Orazalin, Z.Y., Whittle, A.J. and Olsen, M.B. (2015), "Three-dimensional analyses of excavation support system for the Stata Center basement on the MIT campus", J. Geotech. Geoenviron. Eng., 141(7), 05015001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001326.
  37. Ou, C.Y., Liao, J.T. and Cheng, W.L. (2000), "Building response and ground movements induced by a deep excavation", Geotechnique, 50(3), 209-220. https://doi.org/10.1680/geot.2000.50.3.209.
  38. Qian, J., Tong, Y., Mu, L., Lu, Q. and Zhao, H. (2020), "A displacement controlled method for evaluating ground settlement induced by excavation in clay", Geomech. Eng., 20(4), 275-285. https://doi.org/10.12989/gae.2020.20.4.275.
  39. Ruan, H.T., Zhao, J.H., Huang, W.D. and Liu, L. (2010), "Design and analysis of concurrent excavation of adjacent deep foundation pits", Chinese J. Geotech.Eng., 32, 249-254.
  40. Schuster, M., Kung, G.T.C., Juang, C.H. and Hashash, Y.M. (2009), "Simplified model for evaluating damage potential of buildings adjacent to a braced excavation", J. Geotech. Geoenviron. Eng., 135(12), 1823-1835. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000161
  41. Shen, J. (2012), "Analyses and countermeasures on interaction among large-scale group excavation projects", Chinese J. Geotech. Eng., 34, 272-276
  42. Shi, J., Liu, G., Huang, P. and Ng, C.W.W. (2015), "Interaction between a large-scale triangular excavation and adjacent structures in Shanghai soft clay", Tunn. Undergr. Sp. Tech., 50, 282-295. https://doi.org/10.1016/j.tust.2015.07.013.
  43. Shi, J., Fu, Z. and Guo, W. (2019a), "Investigation of geometric effects on three-dimensional tunnel deformation mechanisms due to basement excavation", Comput. Geotech., 106, 108-116. https://doi.org/10.1016/j.compgeo.2018.10.019.
  44. Shi, J., Wei, J., Ng, C.W. and Lu, H. (2019b), "Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand", Comput. Geotech., 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216.
  45. Shi, J., Ding, C., Ng, C.W.W., Lu, H. and Chen, L. (2020), "Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay", Tunn. Undergr. Sp. Tech., 97, 103247. https://doi.org/10.1016/j.tust.2019.103247.
  46. Son, M. and Cording, E.J. (2005), "Estimation of building damage due to excavation-induced ground movements", J. Geotech. Geoenviron. Eng., 131(2), 162-177. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(162).
  47. Son, M. and Cording, E.J. (2008), "Numerical model tests of building response to excavation-induced ground movements", Can. Geotech. J., 45(11), 1611-1621. https://doi.org/10.1139/T08-074.
  48. Son, M. and Cording, E.J. (2011), "Responses of buildings with different structural types to excavation-induced ground settlements", J. Geotech. Geoenviron. Eng., 137(4), 323-333. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000448.
  49. Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025.
  50. Wu, S.Y., Yang, X.P. and Liu, T.J. (2012), "Analysis of influence on deformation of adjacent subway tunnel due to bilateral deep excavations", Chinese J. Rock Mech. Eng,, 31, 3452-3458.
  51. Zhang, Q.B., He, L. and Zhu, W.S. (2016), "Displacement measurement techniques and numerical verification in 3D geomechanical model tests of an underground cavern group", Tunn. Undergr. Sp. Tech., 56, 54-64. https://doi.org/10.1016/j.tust.2016.01.029.