• Title/Summary/Keyword: footing settlement

Search Result 78, Processing Time 0.021 seconds

A laboratory and numerical study on the effect of geogrid-box method on bearing capacity of rock-soil slopes

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.345-354
    • /
    • 2018
  • Currently, layered geogrid method (LGM) is the commonly practiced technique for reinforcement of slopes. In this paper the geogrid-box method (GBM) is introduced as a new approach for reinforcement of rock-soil slopes. To achieve the objectives of this study, a laboratory setup was designed and the slopes without reinforcements and reinforced with LGM and GBM were tested under the loading of a circular footing. The effect of vertical spacing between geogrid layers and box thickness on normalized bearing capacity and failure mechanism of slopes was investigated. A series of 3D finite element analysis were also performed using ABAQUS software to supplement the results of the model tests. The results indicated that the load-settlement behavior and the ultimate bearing capacity of footing can be significantly improved by the inclusion of reinforcing geogrid in the soil. It was found that for the slopes reinforced with GBM, the displacement contours are widely distributed in the rock-soil mass underneath the footing in greater width and depth than that in the reinforced slope with LGM, which in turn results in higher bearing capacity. It was also established that by reducing the thickness of geogrid-boxes, the distribution and depth of displacement contours increases and a longer failure surface is developed, which suggests the enhanced bearing capacity of the slope. Based on the studied designs, the ultimate bearing capacity of the GBM-reinforced slope was found to be 11.16% higher than that of the slope reinforced with LGM. The results also indicated that, reinforcement of rock-soil slopes using GBM causes an improvement in the ultimate bearing capacity as high as 24.8 times more than that of the unreinforced slope.

An Experimental Study on the Reinforcement Effect of Installed Micropiles in the Surround of Footing on Dense Sand (조밀한 모래지반의 기초 인접에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee Tae-Hyung;Im Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.69-81
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of $150\sim300mm$, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed in a soil adjacent to footing (concept of 'soil reinforcement'). With the test results and soil deformation analysis, the reinforcement effect (relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is expected that we nay demonstrate the improvement of an efficiency and application in the design and construction of micropile.

An Experimental Study on the Reinforcement Effect of Installed Micropile under Footing on Dense Sand (조밀한 모래지반의 기초하부에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee, Tae-Hyung;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.191-200
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of 100~300mm, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed under footing(concept of "structure supporting"). With the test results and soil deformation analysis, the reinforcement effect(relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is hoped to demonstrate the improvement of an efficiency and application in the design and construction of micropile.

Analysis of settlements of space frame-shear wall-soil system under seismic forces

  • Jain, D.K.;Hora, M.S.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1255-1276
    • /
    • 2015
  • The importance of considering soil-structure interaction effect in the analysis and design of RC frame buildings is increasingly recognized but still not penetrated to the grass root level owing to various complexities involved. It is well established fact that the soil-structure interaction effect considerably influence the design of multi-storey buildings subjected to lateral seismic loads. The shear walls are often provided in such buildings to increase the lateral stability to resist seismic lateral loads. In the present work, the linear soil-structure analysis of a G+5 storey RC shear wall building frame resting on isolated column footings and supported by deformable soil is presented. The finite element modelling and analysis is carried out using ANSYS software under normal loads as well as under seismic loads. Various load combinations are considered as per IS-1893 (Part-1):2002. The interaction analysis is carried out with and without shear wall to investigate the effect of inclusion of shear wall on the total and differential settlements in the footings due to deformations in the soil mass. The frame and soil mass both are considered to behave in linear elastic manner. It is observed that the soil-structure interaction effect causes significant total and differential settlements in the footings. Maximum total settlement in footings occurs under vertical loads and inner footings settle more than outer footings creating a saucer shaped settlement profile of the footings. Each combination of seismic loads causes maximum differential settlement in one or more footings. Presence of shear wall decreases pulling/pushing effect of seismic forces on footings resulting in more stability to the structures.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

Behavior of SCP Improved Ground with Installation of Sheet Pile (Sheet Pile 설치에 따른 SCP개량지반의 거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.211-218
    • /
    • 2002
  • The paper is to show the behavior of composit ground which is installed with sheet pile in soft soil improved by sand compaction pile. The results of load-settlement relationship, earth pressure, stress concentration characteristics, and final water content were obtained by centrifuge model test. Two cases of tests, installation of sheet pile on the corner and both side of the loading plate for the improved SCP ground which was designed twice of the footing width, were performed for the tests under the vertical and horizontal loading and both side of corner. Finite element program(CRISP) for sand compaction pile using elasto-plastic model and numerical analysis for soft soil using modified cam-clay constitutive equation were compared and analized with the results of model tests. The result of analysis show the increased bearing capacity of soil after, SCP and sheet pile was installed.

  • PDF

Bearing capacity of footing supported by geogrid encased stone columns on soft soil

  • Demir, Ahmet;Sarici, Talha
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.417-439
    • /
    • 2017
  • The stone columns are increasingly being used as a soil improvement method for supporting a wide variety of structures (such as road embankment, buildings, storage tanks etc.) especially built on soft soil. Soil improvement by the stone column method overcomes the settlement problem and low stability. Nevertheless, stone column in very soft soils may not be functional due to insufficient lateral confinement. The required lateral confinement can be overcome by encasing the stone column with a suitable geosynthetic. Encasement of stone columns with geogrid is one of the ideal forms of improving the performance of stone columns. This paper presents the results of a series of experimental tests and numerical analysis to investigate the behavior of stone columns with and without geogrid encasement in soft clay deposits. A total of six small scale laboratory tests were carried out using circular footing with diameters of 0.05 m and 0.1 m. In addition, a well-known available software program called PLAXIS was used to numerical analysis, which was validated by the experimental tests. After good validation, detailed of parametric studies were performed. Different parameters such as bearing capacity of stone columns with and without geogrid encasement, stiffness of geogrid encasement, depth of encasement from ground level, diameter of stone columns, internal friction angle of crushed stone and lateral bulging of stone columns were analyzed. As a result of this study, stone column method can be used in the improvement of soft ground and clear development in the bearing capacity of the stone column occurs due to geogrid encasement. Moreover, the bearing capacity is effected from the diameter of the stone column, the angle of internal friction, rigidity of the encasement, and depth of encasement. Lateral bulging is minimized by geogrid encasement and effected from geogrid rigidity, depth of encasement and diameter of the stone column.

Determination of CPT-based Bearing Capacity of Footings Under Surcharge Using State-dependent Finite Element Analysis (상태의존성 유한요소해석 및 CPT결과를 적용한 상재하중하의 얕은 기초의 지지력 결정)

  • Lee Jun-Hwan;Kim Dae-Ho;Park Dong-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.55-62
    • /
    • 2005
  • The use of the bearing capacity equation is subjected to several uncertainties. In this study, estimation of the bearing capacity of footings based on the cone resistance q$_{c}$ is investigated. Non-linear finite element analyses based on a state-dependent stress-strain model were performed to obtain the load-settlement responses of axially loaded circular footings. Various soil and footing conditions, including different relative densities, depths of embedment, and footing diameters were considered in the analyses. Based on the finite element results, load-settlement curves were obtained and used to determine the unit limit bearing capacity in terms of the cone resistance q$_{c}$ for footings subjected to surcharge. Values of the unit bearing capacity for different embedment depths were in a narrow range, while considerable variation was observed with relative density D$_{R}$. It was observed that the unit limit bearing capacity normalized with respect to q$_{c}$ decreases as D$_{R}$ increases for a given surcharge.

An Optimum Slanting Angle in Reticulated Root Piles Installation under Compressive and Uplift Loads (압축 및 인발하중을 받는 그물식 뿌리말뚝의 최적 타설경사각)

  • 이승현;김명보
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-84
    • /
    • 1996
  • In order to investigate the influence of slanting angle of reticulated root piles(RRP) on their bearing capacities, model tests of compressive and uplift loads on RRP with different slanting angles, which were installed in sandy soils with a relative density of 47%, were carried out. Each pile which is made of a steel bar of 5mm in diameter and 300mm in length, is coated with sand to be 6.5mm in diameter. One set of RRP consists of 8 piles which are installed in circular patterns forming two concentric circles, each of which has 4 piles. Slanting angles of RRP for load tests are 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$. In addition, compressive load tests on circular footing whose diameter is the same as the outer circle of RRP were carried out. Test results show that maximum load bearing capacities of RRP by regression analysis are obtained at about 12$^{\circ}$ and 13$^{\circ}$ of slanting angles for compressive and uplift load tests, respectively. Maximum compressive bearing capacity is estimated to be 13oA bigger than that of the vertical RRP and 95% bigger than that of surface footing. Maximum uplift capacity is estimated to be 21% bigger than that of the vertical RRP. And it can be appreciated that increasing the slanting angle makes the load -Settlement behavior more ductile.

  • PDF

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.