• Title/Summary/Keyword: following system

Search Result 7,867, Processing Time 0.037 seconds

Path-Following using Path-Observer for Wheeled Mobile Robots (경로 관측기를 이용한 차륜형 이동 로봇의 경로 추종)

  • Lim, Mee-Seub;Lim, Joon-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1448-1456
    • /
    • 1999
  • In this paper, we propose a new technique for path-following of the wheeled mobile robot systems with nonholonomic constraints using a path-observer. We discuss the path-following problems of the nonholonomic mobile robot systems which have two nonsteerable, independently driven wheels with the various initial conditions such as a position, a heading angle, and a velocity. It is shown that the performance of dynamic path-following importantly is affected by the intial conditions. Particularly, if the initial conditions become more distant from the desired path and the desired velocity become faster, the system is shown to have worse performance and small time local stable. To find the controllable and stable control for path-following with various initial configuration, we propose the path-observer which can be used for control of the stable path-following of nonholonomic mobile robot system with the various initial conditions. The proposed scheme exhibits the efficient path-following properties for nonholonomic mobile robot in any intial conditions. The simulation results demonstrate the effectiveness of the proposed method for dynamic path-following tasks with the various initial conditions.

  • PDF

Design of LFT-Based T-S Fuzzy Controller for Model-Following using LMIs (선형 행렬부등식과 분해법을 이용한 퍼지제어기 설계)

  • 손홍엽;이희진;조영완;김은태;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.123-128
    • /
    • 1998
  • This paper proposes design of LFT-based fuzzy controllers for model-following, which are better than the previous input-output linearization controllers, which are not able to follow the model system states and which do not guarantee the stability of all states. The method proposed in this paper provides a LFT-based Takagi-Sugeno(T-S) fuzzy controller with guaranteed stability and model-following via the following steps: First, using LFT(Linear Fractional Transformation) and T-S fuzzy model, controllers, are obtained. Next, error dynamics are obtained for model-following, and errors go to 0(zero). Finally, a T-s fuzzy controller that can stabilizxe the system with the requirement on the control input satisfied is obtained by solving the LMIs with the MATLAB LMI Control Toolbox and a model-following controller is obtained. Simulations are performed for the LFT-based T-S fuzzy controller designed by the proposed method, which show better performance than the results of input-out ut linearization controller.

  • PDF

Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters (전동 스쿠터를 위한 DGPS 기반의 위치 추정 및 반 자율 주행 시스템 개발)

  • Song, Ui-Kyu;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.674-684
    • /
    • 2011
  • More and more elderly and disabled people are using electric scooters instead of electric wheelchairs because of higher mobility. However, people with high levels of impairment or the elderly still have difficulties in driving the electric scooters safely. Semi-autonomous electric scooter system is one of the solutions for the safety: Either manual driving or autonomous driving can be used selectively. In this paper, we implement a semi-autonomous electric scooter system with functions of localization and path following. In order to recognize the pose of electric scooter in outdoor environments, we design an outdoor localization system based on the extended Kalman filter using DGPS (Differential Global Positioning System) and wheel encoders. We added an accelerometer to make the localization system adaptable to road condition. Also we propose a path following algorithm using two arcs with current pose of the electric scooter and a given path in the map. Simulation results are described to show that the proposed algorithms provide the ability to drive an electric scooter semi-autonomously. Finally, we conduct outdoor experiments to reveal the practicality of the proposed system.

A Selection of Optimal Weighting matrix for Model Following Multivariable Control System to Boiler-Turbine Equipment Using GA (GA를 이용한 보일러-터빈 설비의 모델 추종형 다변수 제어 시스템 설계를 위한 취적 가중치 행렬의 선정)

  • 황현준;정호성
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.102-110
    • /
    • 1999
  • The aim of this paper is to suggest a design method of the optimal model following control system using gerelic algoritlun (GA). This control system is designed by applying GA with reference model to the optimal determinination of weighting matrices Q, R that are given by LQ regulator prooblem. The method to do this is that all the diagooal elements of weighting matrices are optimized simultaneously by GA, in the search domain selected adequately. And, we design the mxiel following control system to boiler-turbine equipment by the proposed mothod. The model following control system designed by this mothod has the better command tracking perfannaoce than that of the control system designed by the trial-and-error method. The effectiveness of this cootrol System is verified by computer simulation.

  • PDF

A design on model following optimal boiler-turbine H$\infty$control system using genetic algorithm (유전 알고리즘을 이용한 모델 추종형 최적 보일러-터빈 H$\infty$ 제어시스템의 설계)

  • 황현준;김동완;박준호;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1460-1463
    • /
    • 1997
  • The aim of this paper is to suggest a design method of the model following optimal boiler-turbine H.inf. control system using genetic algorithm. This boiler-turbine H.inf. control system is designed by applying genetic algortihm with reference model to the optimal determination of weighting functions and design parameter .gamma. that are given by Glover-Doyle algornithm whch can design H.inf. contrlaaer in the sate. space. The first method to do this is ghat the gains of weightinf functions and .gamma. are optimized simultaneously by genetic algroithm. And the second method is that not only the gains and .gamma. but also the dynamics of weighting functions are optimized at the same time by genetic algonithm. The effectiveness of this boiler-turbine H.inf. control system is verified and compared with LQG/LTR control system by computer simulation.

  • PDF

Relative Motion Control Methodology Using the Minimum Relative Error Between Two Systems (두 시스템간의 편차 최소화를 적용한 상대적 동작제어 방법)

  • 김성권
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.994-1000
    • /
    • 2003
  • A new relative motion control methodology for a following system to an independent leading system is proposed for controlling relative position, velocity, and tension etc. It is based on maintaining minimum relative error between two independent systems. The control command of the following system to a leading system is generated by adding the current command and the output of the relative error compensation. The proposed control method is implemented on the experimental equipment which is a wire winding-unwinding system to control the tension of the line. The results show the unwinding system(follower) following the independent motion of the winding system(leader) to control the constant tension of the line in order to keep the roller dancer in reference position. The relative motion control method proposed in this paper can be applied to high precision equipment for unwinding and winding fine wire, fine fiber, and tape etc.

Design and its Application of Robust Degital Optimal Model Following Servo System (강인한 디지털 최적모델 추종형 서보시스템의 구성과 그 적용)

  • 이양우;김정택;황창선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1186-1192
    • /
    • 1994
  • This paper presents an algorithm to design a robust digital model following servo control system in which optimal linear quadratic regulator problem is used to design the control system that make the step/ramp response of the plant kept close to a specified ideal step/ramp response of the model. The quadratic criterion function for a continuous system is used to design the robust digital servo control system. The feasibility of the design technique is shown by the simulation and the proposed method is applied to the speed control of DC servo motor.

  • PDF

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Leader-Following Sampled-Data Control of Wheeled Mobile Robots using Clock Dependent Lyapunov Function (시간 종속적인 리아프노프 함수를 이용한 모바일 로봇의 선도-추종 샘플 데이터 제어)

  • Ye, Donghee;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.119-127
    • /
    • 2021
  • The aim of this paper is to propose a less conservative stabilization condition for leader-following sampled-data control of wheeled mobile robot (WMR) systems by using a clock-dependent Lyapunov function (CDLF) with looped functionals. In the leader-following WMR system, the state and input of the leader robot are measured by digital devices mounted on the following robot, and they are utilized to construct the sampled-data controller of the following robot. To design the sampled-data controller, a stabilization condition is derived by using the CDLF with looped functionals, and formulated in terms of sum of squares (SOS). The considered Lyapunov function is a polynomial form with respect to the clock related to the transmitted sampling instants. As the degree of the Lyapunov function increases, the stabilization condition becomes less conservative. This ensures that the designed controller is able to stabilize the system with a larger maximum sampling interval. The simulation results are provided to demonstrate the effectiveness of the proposed method.

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF