• Title/Summary/Keyword: following system

Search Result 7,867, Processing Time 0.037 seconds

Vehicle-following system using color-vision

  • 정준형;한민홍
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.536-542
    • /
    • 1994
  • This paper introduces a vehicle-following-system in which a moving vehicle recognizes the front vehicle's tail-light color and luminance, while maintaining a certain distance and avoiding collision. Using color images rather than using gray-scale images makes it easier to detect the objective color and eliminates the need of a thresholding. The Methods used are RGB to HSV conversion and global region growing method. This paper contributes to the basic study of Color-Vision, and can be extended to color inspection systems.

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

Variable structrure system control method for the trajectory control of robot arm (로보트 팔의 궤도제어를 위한 가변구조제어방식)

  • 김주홍;송동설;엄기환;최우승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.12-17
    • /
    • 1991
  • In this paper, a variable structure system control method is proposed to the trajectory control of robot arm. A proposed method uses nonlinear switching function and saturation function. Furthermore, learning control method uses to decrease of the following error. The computer simulation results show that the chattering and the following error decrease and is improved the control the performance by a proposed method.

  • PDF

Asymptotic Disturbance Rejection using a Disturbance Observer in the Track-Following Control System of a High-Speed Optical Disk Drive (고배속 광디스크 드라이브 트랙 추종 제어 시스템에서의 외란 관측기를 이용한 점근적 외란 제거)

  • 유정래;문정호;진경복;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2004
  • To obtain a good tracking performance in an optical disk drive servo system, it is essential to attenuate periodic disturbances caused by eccentric rotation of the disk. As an effective control scheme for enhancing disturbance attenuation performance, disturbance observers (DOBs) have been successfully applied to the track-following servo system of optical disk drives. In disk drive systems, the improvement of data transfer rate has been achieved mainly by the increase of disk rotational speed, which leads to the increase of the disturbance frequency. Conventional DOBs are no longer effective in disk drive systems with a high-speed rotation mechanism because the performance of conventional DOBs is severely degraded as the disk rotational frequency increases. This paper proposes a new DOB structure for effective rejection of the disturbance in optical disk drives with a very high rotation speed. Asymptotic disturbance rejection is achieved by adopting a band-pass filter in the DOB structure, which is tuned based on the information on the disturbance frequency. In addition, performance sensitivity of the proposed DOB to changes in disk rotational frequency is analyzed. The effectiveness of the proposed DOB is verified through simulations and experiments using a DVD-ROM drive.

Cardiopulmonary Resuscitation: New Concept

  • Lee, Kwang-Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.5
    • /
    • pp.401-408
    • /
    • 2012
  • Cardiopulmonary resuscitation (CPR) is a series of life-saving actions that improve the chances of survival, following cardiac arrest. Successful resuscitation, following cardiac arrest, requires an integrated set of coordinated actions represented by the links in the Chain of Survival. The links include the following: immediate recognition of cardiac arrest and activation of the emergency response system, early CPR with an emphasis on chest compressions, rapid defibrillation, effective advanced life support, and integrated post-cardiac arrest care. The newest development in the CPR guideline is a change in the basic life support sequence of steps from "A-B-C" (Airway, Breathing, Chest compressions) to "C-A-B" (Chest compressions, Airway, Breathing) for adults. Also, "Hands-Only (compression only) CPR" is emphasized for the untrained lay rescuer. On the basis of the strength of the available evidence, there was unanimous support for continuous emphasis on high-quality CPR with compressions of adequate rate and depth, which allows for complete chest recoil, minimizing interruptions in chest compressions and avoiding excessive ventilation. High-quality CPR is the cornerstone of a system of care that can optimize outcomes beyond return of spontaneous circulation (ROSC). There is an increased emphasis on physiologic monitoring to optimize CPR quality, and to detect ROSC. A comprehensive, structured, integrated, multidisciplinary system of care should be implemented in a consistent manner for the treatment of post-cardiac arrest care patients. The return to a prior quality and functional state of health is the ultimate goal of a resuscitation system of care.

Model following controller design and implementation (모델 추종 제어기 설계 및 실현화)

  • 정구락;김광태;김재환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.317-321
    • /
    • 1990
  • This paper proposes a performance improvement to a control system with optimal state feedback control. In this paper, a simple and direct design procedure is proposed to design the model following controller. The scheme is implemented in a 16 bit micromputer with math corprocessor. Tests on a DC machine have been conducted.

  • PDF

Handling Quality Improvements of Fly-By-Wire Helicopter using Combined Model Following Controller with Decoupler

  • Lee, Jangho;Kim, Eung-Tai;Ryu, Hyeok;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.378-387
    • /
    • 2017
  • The combined model following control (MFC)-decoupler system is employed for a full authority fly-by-wire utility helicopter to enhance handling qualities. The MFC, which governs the vehicle to follow the prescribed model, is widely employed for modern helicopters. However, it may not be sufficient as helicopters often suffer significant cross coupling. The coupled responses between control axes of a helicopter increase the pilot's work load and may degrade handling qualities. As the decoupler is introduced to the MFC, the combined MFC-decoupler effectively solves the coupling problems and enhances handling qualities. The proposed system is verified via the handling qualities prediction using the mathematical dynamics model. The analysis results are confirmed through the piloted simulation.

Design of Regulator and Model Following Controller on Servomechanism (서-보 메카니즘에 관한 레귤레이터와 모델 추종 제어기의 설계)

  • Choi, Sun-Pil;Jun, Sang-Young;Yim, Hwa-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.411-414
    • /
    • 1989
  • In this paper, design of the regulator and model following is studied controller on servomechanism for discrete time system. The design of the servomechanism controller is studied on the method of mode1 following controller for the output of the process to follow the output of its model. Furthermore, a common approach to eliminate disturbance and steady-state error between the outputs of the process and its model is to introduce an integrator into the control loop itself. They are eliminated when we incorporate the integrator into the closed loop system.

  • PDF

Apoptotic Cell Death Following Traumatic Injury to the Central Nervous System

  • Springer, Joe E.
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.94-105
    • /
    • 2002
  • Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

The Model-Following Robust Controller Design for the Vector-Controlled Induction Motor (벡터제어 유도전동기의 모델추종 견실제어기 설계)

  • Chi Hwan Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.93-101
    • /
    • 1993
  • The transfer function of vector-controlled induction motor is represented along with both unstructured and structured uncertainty such as the error of rotor time constant and current ripple. The low-pass-filter behavior of a magnetizing inductance gets rid of unstructured uncertainty in the transfer function. The robust controller to compensate variation of the transfer function is designed using simple P-I linear controllers. The coefficients of speed PI controller are determined from an overshoot and a rising time of system and the coefficients of model-following PI controller are obtained using the solution of Riccati equation of LQR control in the state space equation of the error system. Experimental results with the DSP-based model-following robust controller are shown a good robustness against the structured uncertainty of the motor.

  • PDF