• Title/Summary/Keyword: foam volume ratio

Search Result 48, Processing Time 0.026 seconds

Characteristics of Foam Concrete with Application of Mineral Admixture (무기혼화재 적용에 따른 기포콘크리트의 특성)

  • Kim, Sang-Chel;Kim, Yun-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • self-loading, various problems related to construction can be solved as well as the save of construction cost. Thus, this study has an aim of applying foam concrete to structural purpose by adding bottom ash as a reinforcing material like fine aggregate, in contrast to conventional non-structural usage such as soundproofing or insulating materials. In addition, it was evaluated in terms of unit volume weight, flow value, air void, water absorption and dosage of foam agent wether replacement of cement by granulated blast furnace slag or fly-ash has an effect on the material characteristics of foam concrete. As results of experiments, it can be found that the increase of fine aggregate ratio, that is to say, the increase of bottom ash results in the increase of unit volume weight, while decreasing air void and flow value. But, appropriate addition of bottom ash to foam concrete makes it easy to control a homogeneous and uniform quality in foam concrete due to less sensitive to bubbles. As the replacement ratio of mineral admixtures such as granulated blast furnace slag and fly-ash increases, as unit volume weight tends to decrease. In the meanwhile, serious effects were shown on fluidity of foam concrete when more than limit of replacement ratio was applied.

  • PDF

Effect of Synthetic Hydrotalcite on Salt Water Resistance of Chloroprene rubber Foam (Synthetic Hydrotalcite가 클로로프렌 고무 발포체의 내염수성에 미치는 영향 연구)

  • Park, Eun Young;Seo, Eun Ho;Lim, Sung Wook
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • In this study, we investigated for synthetic hydrotalcite in chloroprene rubber foam. Experiments were carried out to find the optimum content ratio by controlling the contents of MgO and Hydrotalcite. Swelling test in toluene immersion was made to measure the crosslinking density of CR foams, and the cure properties were investigated with flat die rheometer and Mooney viscosity. The difference of hardness, tensile strength and elongation at break were observed after immersing in 7% NaCl or 21% NaCl solutions for a day and four days. In addition, the volume change and water content remaining in CR foam were measured after immersing NaCl solution. As content of MgO increased, the value of the cure torque tended to increase, but it was almost constant above 2phr of MgO. However, the Mooney viscosity decreased with increasing MgO content. The crosslinking density, determined by the swelling ratio, showed that the CR compound without MgO showed a higher degree of swelling. When the content of hydrotalcite/MgO was 3:2, it was the lowest volume change of CR form. Also, As the content of hydrotalcite decreased, the difference of mechanical properties before and after immersion NaCl solution increased.

Foam Separation of Bovine Serum Protein Fractions (소 혈청 단백질 분획들의 기포분리 현상에 관한 연구)

  • Lee, Boo-Yong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 1987
  • The foam separation of bovine serum proteins was investigated and the protein fractionation by foam separation was analyzed by PAG electrophoresis. The protein concentration for the surface excess formation of bovine serum was in the range of $20-800\;{\mu}g/ml$. At pH 5, the foamate volume was maximum, but the enrichment ratio minimum. As the temperature was elevated, the foamate volume decreased and the enrichment ratio increase. As the gas flow rate increased from 25 to 100 ml/min, the foamate volume decreased and the enrichment ratio increased. The enrichment ration became maximum when the added ionic strength of serum solution was in the range of 1-3 by the addition of different types of salts, and this was related to the reduction of surface tension of the solution. In general, BSA, ${\alpha}_1$, and ${\alpha}_2-globulins$, which have relatively small molecular weight and high hydrophobicity, moved easily to the foam, and the separation of protein fractions in the serum varied with the changes in pH, temperature, gas flow rate and ionic strength of the solution.

  • PDF

Viscosity analysis of lightweight foamed mortar for foam stability (기포 안정성 확보를 위한 경향 기포 모르타르의 점도 분석)

  • Lee, Hyangsun;Son, Baegeun;Jeon, Jongwoon;Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.52-53
    • /
    • 2018
  • In this study, viscosity analysis of the lightweight foamed mortar was conducted to evaluate the foam stability. According to a series of experiment, void volume related with density of the mixture and viscosity of the mixture were infleunced by water-to-binder ratio and addition of viscosity modifying admixture (VMA). Especially, the stability of the foam inside the mortar was confirmed with adding VMA.

  • PDF

Field Applicability and Manufacturing of Foam Concrete as Filler with the Low-strength and High-flow for Repair System of Ground Subsidence (지반 함몰 복구용 저강도·고유동 충전재로서 기포콘크리트 연구 및 현장적용)

  • Ma, Young;Kim, Beom-Seok;Woo, Yang-Yi;Jung, Kyung-Hun;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.43-52
    • /
    • 2020
  • The objectives of this study were to identify the optimal mix of foam concrete with the low-strength and high-flow for the repairing ground subsidence situation emergently by utilizing a large amount of industrial by-products and evaluate the possibility by applying it to the site. The factors of the experiment were the mixing ratio of mixing water and a foaming agent and the mixing ratio of foam over paste volume. The optimal mix identified by the experiment was applied to the field and basic properties were evaluated. The results of the experiment showed that the optimal mixing ratio of mixing water and the foaming agent was 10%. Moreover, when the mixing ratio of pre-foam over paste volume was 170%, it satisfied the target. However, to ensure stable quality when applying to the field, the foam mixing ratio was set 140% for the field application. The field application test of foam concrete with the low-strength and high-flow using an eco-friendly binder satisfied all target performances. Therefore, the possibility of using it as a mixture and construction method for a ground repair system is confirmed. However, there was a quality deviation between the upper part and the lower part due to the separation between foam and paste. Consequently, further studies are needed to improve it.

Improving buckling response of the square steel tube by using steel foam

  • Moradi, Mohammadreza;Arwade, Sanjay R.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1017-1036
    • /
    • 2014
  • Steel tubes have an efficient shape with large second moment of inertia relative to their light weight. One of the main problems of these members is their low buckling resistance caused from having thin walls. In this study, steel foams with high strength over weight ratio is used to fill the steel tube to beneficially modify the response of steel tubes. The linear eigenvalue and plastic collapse FE analysis is done on steel foam filled tube under pure compression and three point bending simulation. It is shown that steel foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior is investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve, in a way that, the failure mode change from local buckling to yielding.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

An Experimental Study on Compressive Strength of Lightweight Concrete made of Polystyrene Foam Balls (Polystyrene Beads를 이용한 경량콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.155-160
    • /
    • 1999
  • Recently, the study on mix design of lightweight concrete using the polystyrene foam balls is put into practice from the viewpoint to grade up the quality of concrete and recyclable usage of industrial by products. Polystyrene aggregate concrete, PAC, can be used as structural concrete in low strength application. For instance, PAC could be used in the middle part of sandwich panel where stresses are generally low and in the case of grid-type reinforcement where it does not need high bond strength but little compressive strength to resist the pressure of transverse reinforcement. From this point of view, the authors discussed the influence of fluidity and compressive strength of concrete by the difference of the volume percentage of polystyrene foam balls and water cement ratio.

  • PDF

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.