• Title/Summary/Keyword: fluorescein isothiocyanate (FITC)

Search Result 56, Processing Time 0.026 seconds

Preparation and Release Behavior of Methoxy poly(ethylene glycol)- poly(L-lactide-co-glycolide) Wafer Containing Albumin (알부민을 함유한 메톡시 폴리(에틸렌 글리콜)- 폴리(L-락타이드-co-글리콜라이드) 웨이퍼의 제조 및 방출거동)

  • 서광수;김문석;김경자;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.328-334
    • /
    • 2004
  • A series of methoxy poly(ethylene glycol) (MPEG)-poly(L-lactide-co-glycolide) (PLGA) diblock copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with carbitol (134 g/mole) or different molecular weights of MPEG (550, 2000, and 5000 g/mole) as an initiator in presence of Sn(Oct)$_2$. The properties of diblock copolymers were characterized by using $^1$H-NMR, GPC, and XRD. After uniform mixing of block copolymers and 1% albumin bovine-fluorescein isothiocyanate(FITC-BSA) with a freeze miller, the wafers loaded FITC-BSA were fabricated by using a mold with a dimensions of 3 mm${\times}$1mm diameter. The release profiles of FITC-BSA and the pH changes of wafer were examined using pH 7.4 PBS for 30 days at 37$^{\circ}C$. The release profiles of albumin showed fast initial burst as the molecular weights of MPEG increased. As a result of this study, the release behavior of BSA was controlled with introducing MPEG in the block copolymers.

In Vitro Cellular Uptake and Cytotoxicity of Paclitaxel-Loaded Glycol Chitosan Self-Assembled Nanoparticles

  • Park, Ji-Sun;Cho, Yong-Woo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.513-519
    • /
    • 2007
  • Self-assembled nanoparticles have great potential to act as vehicles for hydrophobic drug delivery. Understanding nanoparticle cellular internalization is essential for designing drugs intended for intracellular delivery. Here, the endocytosis and exocytosis of fluorescein isothiocyanate (FITC)-conjugated glycol chitosan (FGC) self-assembled nanoparticles were investigated by flow cytometry and confocal microscopy. The cellular internalization of FGC nanoparticles was initiated by nonspecific interactions between nanoparticles and cell membranes. Although adsorptive endocytosis of the nanoparticles occurred quickly, significant amounts of FGC nanoparticles were exocytosed, particularly in the early stage of endocytosis. The amount of exocytosed nanoparticles was dependent on the pre-incubation time with nanoparticles, suggesting that exocytosis is dependent on the progress of endocytosis. FGC nanoparticles internalized by adsorptive endocytosis were distributed in the cytoplasm, but not in the nucleus. In vitro cell cycle analysis demonstrated that FGC nanoparticles delivered paclitaxel into the cytoplasm and were effective in arresting cancer cell growth.

Rapid diagnosis of Pseudotuberclosis in yellowtail (Seriola quinqueradiata) by immunofluorescent antibody technique (면역형광항체법(免疫螢光抗體法)에 의(依)한 방어의 유결절증(類結節症) 신속(迅速) 진단(診斷))

  • Bang, Jong-Deuk;Jung, Sung-Hee;Chun, Seh-Kyu
    • Journal of fish pathology
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1990
  • Yellow tail (Seriola quinqueradiata) infected by Pasteurella piscicida have been occurred to mass mortality without showing apparent surface lesions in cage culture farms. In this case, it is necessary to consider countermeasure by rapid diagnosis of infected fish. The purpose of the present study was to investigate usefulness of the direct fluorescent antibody technique(FAT) for rapid diagnosis of pseudotuberclosis of cultured yellowtail caused by P. piscicida. Antibody produced by inoculating rabbit with formalin killed pseudotuberclosis bacteria antigen(strain KNP-2). Immunoglobulin-G(IgG) was purified from antisera by DEAE-cellulose column chromatography and conjugate with fluorescein isothiocyanate. Fluorescein-labeled antisera was purified by sephadex G-25 gel column chromatography. The fluorescein/protein molar ratio of labeled antisera was determined as 8.8-9.5. Diagnosis of cultured yellowtail was examined in cage culture farms which located in Tongyung, kyungnam from July to October 1990. The causative bacteria of pseudotuberclosis could be detected within two hours after the specimens were transferred to the laboratory for FAT, and it showed that FAT could be adapted as a rapid and accurate diagnostic method of pseudotuberclosis in yellowtail.

  • PDF

Formulation and Characterization of Antigen-loaded PLGA Nanoparticles for Efficient Cross-priming of the Antigen

  • Lee, Young-Ran;Lee, Young-Hee;Im, Sun-A;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • Background: Nanoparticles (NPs) prepared from biodegradable polymers, such as poly (D,L-lactic acid-co-glycolic acid) (PLGA), have been studied as vehicles for the delivery of antigens to phagocytes. This paper describes the preparation of antigen-loaded PLGA-NPs for efficient cross-priming. Methods: NPs containing a similar amount of ovalbumin (OVA) but different sizes were produced using a micromixer-based W/O/W solvent evaporation procedure, and the efficiency of the NPs to induce the cross-presentation of OVA peptides were examined in dendritic cells (DCs). Cellular uptake and biodistribution studies were performed using fluorescein isothiocyanate (FITC)-loaded NPs in mice. Results: The NPs in the range of $1.1{\sim}1.4{\mu}m$ in size were the most and almost equally efficient in inducing the cross-presentation of OVA peptides via $H-2K^b$ molecules. Cellular uptake and biodistribution studies showed that opsonization of the NPs with mouse IgG greatly increased the percentage of FITC-positive cells in the spleen and lymph nodes. The major cell type of FITC-positive cells in the spleen was macrophages, whereas that of lymph nodes was DCs. Conclusion: These results show that IgG-opsonized PLGA-NPs with a mean size of $1.1{\mu}m$ would be the choice of biodegradable carriers for the targeted-delivery of protein antigens for cross-priming in vivo.

Surface Modification of Glass Chip for Peptide Microarray (펩타이드 Microarray를 위한 유리 칩의 표면 개질)

  • Cho, Hyung-Min;Lim, Chang-Hwan;Neff, Silke;Jungbauer, Alois;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.260-264
    • /
    • 2007
  • Peptides are frequently studied as candidates for new drug development. Recently, synthesized peptide library is screened for a certain functionality on a microarray biochip format. In this study, in order to replace the conventional cellulose membrane with glass for a microarray chip substrate for peptide library screening, we modified the glass surface from amines to thiols and covalently immobilized the peptides. Using trypsin-FITC (fluorescein isothiocyanate) conjugate that could specifically bind to a trypsin binding domain consisting of a 7-amino acid peptide, we checked the degree of surface modification. Because of the relatively lower hydrophilicity and reduced surface roughness, the conjugation reaction to the glass required a longer reaction time and a higher temperature. It took approximately 12 hr for the reaction to be completed. From the fluorescence signal intensity, we could differentiate between the target and the control peptides. This difference was confirmed by a separate experiment using QCM. Furthermore, a smaller volume and higher concentration of a spot showed a higher fluorescence intensity. These data would provide the basic conditions for the development of microarray peptide biochips.

Localization of Germin Genes and Their Products in Developing Wheat Coleoptiles

  • Caliskan, Mahmut;Ozcan, Birgul;Turan, Cemal;Cuming, Andrew C.
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.339-342
    • /
    • 2004
  • Germination is a process which characterized with nescient synthesis of genes. Among the genes synthesized during the germination of wheat embryos, germin genes, proteins and their enzymatic activity were defined. Germin is a water soluble homopentameric glycoprotein which is remarkable resistant to degradation by a broad range of proteases including pepsin. Germin proteins found to have strong oxalate oxidase activity which produces hydrogen peroxide by degrading oxalic acid. The current study, aimed to localize the germin genes, proteins and enzymatic activities in developing coleoptiles which is a rapidly growing protective tissue of leaf primordium and shoot apex. Non-radioactively abeled germin riboprobes were employed to localize germin mRNAs in situ. FITC (Fluorescein isothiocyanate) and alkaline phosphatase linked anti-germin antibodies were used to localize germin proteins under the fluorescence and light microscopy and finally germin enzymatic activity was localized by using appropriate enzyme assay. The results revealed that in coleoptiles germin genes, proteins and their enzymatic activity were predominantly associated with the cells of epidermis and vascular bundle sheath cells.

Microfilter Chip Fabrication for Bead-Based Immunoassay (비드를 이용한 면역분석용 마이크로필터 칩의 제작)

  • Lee, Seung-Woo;Ahn, Yoo-Min;Chai, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1429-1434
    • /
    • 2004
  • Immunoassay is one of the important analytical methods for clinical diagnoses and biochemical studies, but needs a long time, troublesome procedures and expensive reagents. In this study, therefore, we propose the micro filter chip with microbeads for immunoassay, which has pillar structures. The advantage of the proposed micro filter chip is to use simple fabrication process and cheap materials. The mold was made by the photolithography technique with Si wafer and negative photoresist SU-8. The replica was made of PDMS, bonded on the pyrex glass. The micro filter chip consists of inlet channel, filter chamber and outlet channel. HBV (Hepatitius B virus) monoclonal antibody (Ag1) labeled with biotin were immobilized onto streptavidin coated beads of 30∼50 $\mu$m size. Fluorescein isothiocyanate (FITC)-labeled HBV monoclonal antibody (Ag8) was used to detect HBsAg (Hebatitis B virus surface Antigen), and fluorescence intensity was monitored by epi-fluorescence microscope. In this study, the immune response of less than 30 min was obtained with with the use of 100 $m\ell$ of sample.

Assessment of Lipopolysaccharide-binding Activity of Bifidobacterium and Its Relationship with Cell Surface Hydrophobicity, Autoaggregation, and Inhibition of Interleukin-8 Production

  • Park, Myeong-Soo;Kim, Min-Jeong;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1120-1126
    • /
    • 2007
  • This study was performed to screen probiotic bifidobacteria for their ability to bind and neutralize lipopolysaccharides (LPS) from Escherichia coli and to verify the relationship between LPS-binding ability, cell surface hydrophobicity (CSH), and inhibition of LPS-induced interleukin-8 (IL-8) secretion by HT-29 cells of the various bifidobacterial strains. Ninety bifidobacteria isolates from human feces were assessed for their ability to bind fluorescein isothiocyanate (FITC)-labeled LPS from E. coli. Isolates showing 30-60% binding were designated LPS-high binding (LPS-H) and those with less than 15% binding were designated LPS-low binding (LPS-L). The CSH, autoaggregation (AA), and inhibition of LPS-induced IL-8 release from HT-29 cells of the LPS-H and LPS-L groups were evaluated. Five bifidobacteria strains showed high levels of LPS binding, CSH, AA, and inhibition of IL-8 release. However, statistically significant correlations between LPS binding, CSH, AA, and reduction of IL-8 release were not found. Although we could isolate bifidobacteria with high LPS-binding ability, CSH, AA, and inhibition of IL-8 release, each characteristic should be considered as strain dependent. Bifidobacteria with high LPS binding and inhibition of IL-8 release may be good agents for preventing inflammation by neutralizing Gram-negative endotoxins and improving intestinal health.

The Rapid Differentiation of Toxic Alexandrium and Pseudo-nitzschia Species Using Fluorescent Lectin Probes

  • Cho, Eun-Seob;Park, Jong-Gyu;Kim, Hak-Gyoon;Kim, Chang-Hoon;Rhodes, Lesley L.;Chung, Chang-Soo
    • Journal of the korean society of oceanography
    • /
    • v.34 no.3
    • /
    • pp.167-171
    • /
    • 1999
  • Since toxic Alexandrium catenella and non-toxic A. fraterculus are morphologically similar, they are difficult to discriminate under the light microscope. However, a novel technology, such as fluorescein isothiocyanate (FITC)-conjugated lectin probes enables easy and rapid differentiation. Toxic A. catenella bound seven different lectins, whereas the non-toxic A. fratercuzus did not bind Arachis hypogaea (PNA) lectin. In addition, Pseudo-nitrschia species in this study were also difficult to identify to species level with light microscope techniques, but it was possible to classify them using fluorescent lectins. Pseudo-nitzschia multistriata, P. subfraudulenta and P. pungens bound Canavalia ensiformis (ConA), whereas P. subpaclfica did not, and P. pungens also bound Ricinus communis (RCA). These results imply that lectin could be used as a critical tool in the differentiation of P. multistriata, P. subfraudulenta and P. pungens. However, P. subpacifica was not differentiated by the lectins tested. Therefore, it isconcluded that lectin probes are useful for discriminating toxic A. catenella from non-toxic A. fraterculus, and for the identification of some Pseudo-nitzschia species. In addition, this method has a great potential to speed and detection between non-toxic and toxic harmful algal blooms (HABs) in Korean biotoxin monitoring systems.

  • PDF

A Novel Antifungal Analog Peptide Derived from Protaetiamycine

  • Lee, Juneyoung;Hong, Hyun Joo;Kim, Jin-Kyoung;Hwang, Jae-Sam;Kim, Yangmee;Lee, Dong Gun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.473-477
    • /
    • 2009
  • Previously, the 9-mer analog peptides, 9Pbw2 and 9Pbw4, were designed based on a defensin-like peptide, protaetiamycine isolated from Protaetia brevitarsis. In this study, antifungal effects of the analog peptides were investigated. The antifungal susceptibility testing exhibited that 9Pbw4 contained more potent antifungal activities than 9Pbw2. A PI influx assay confirmed the effects of the analog peptides and demonstrated that the peptides exerted their activity by a membrane-active mechanism, in an energy-independent manner. As the noteworthy potency of 9Pbw4, the mechanism(s) of 9Pbw4 were further investigated. The membrane studies, using rhodamine-labeled giant unilamellar vesicle (GUV) and fluorescein isothiocyanate (FITC)-dextran loaded liposome, suggested that the membrane-active mechanism of 9Pbw4 could have originated from the pore-forming action and the radii of pores was presumed to be anywhere from 1.8 nm to 3.3 nm. These results were confirmed by 3D-flow cytometric contour-plot analysis. The present study suggests a potential of 9Pbw4 as a novel antifungal peptide.