免疫螢光抗體法에 依한 방어의 類結節症 迅速 診断
 方鍾得•聟丞姫•田世圭＊
 國立水産振興院 病理科
 ＊釜山水産大學校 魚病學科
 Rapid diagnosis of Pseudotuberclosis in yellowtail （Seriola quinqueradiata）by immunofluorescent antibody technique

Jong－Duek BANG • Sung－Hee JUNG • Seh－Kyu CHUN＊
Pathalogy Division
National Fisheries Research \＆Delopment Agency
Kyongnam 626－900，Korea
＊Department of Fish Pathology
National Fisheries University of Pusan，Pusan 608－737，Korea

Yellow tail（Seriola quinqueradiata）infected by Pasteurella piscicida have been occurred to mass mortality without showing apparent surface lesions in cage culture farms．In this case，it is necessary to consider countermeasure by rapid diagnosis of infected fish．The purpose of the present study was to investigate usefulness of the direct fluorescent antibody technique（FAT）for rapid diagnosis of pseudotuberclosis of cultured yellowtail caused by P．piscicida．

Antibody produced by inoculating rabbit with formalin killed pseudotuberclosis bacteria antigen（strain KNP－2）．Immunoglobulin－$G(\operatorname{IgG})$ was purified from antisera by DEAE－cellulose column chromatography and conjugate with fluorescein isothiocyanate．Fluorescein－labeled antisera was purified by sephadex G－25 gel column chromatography．The fluorescein／protein molar ratio of labeled antisera was determined as 8．8－9．5．

Diagnosis of cultured yellowtail was examined in cage culture farms which located in Tongyung，kyung－ nam from July to October 1990．The causative bacteria of pseudotuberclosis could be detected within two hours after the specimens were transferred to the laboratory for FAT，and it showed that FAT could be adapted as a rapid and accurate diagnostic method of pseudotuberclosis in yellowtail．

12 Rapid diagnosis of pseudotuberclosis

緒 論

最近 魚類養殖의 增加䄍 더불어 生産量이 를어나면 서 疾病으로 因한 被害도 增加하고 있을 뿐 아니라發生되는 疾病经 樣狀도 多樣하고 治療도 어려운 賔情이다．

魚病對策을 爲䐈여는 早期診断에 依한 治療對策이講究되어야 하는데 細菌性 疾病의 경우 通常 使用되고 있는 平板塗抹 培養法은 初期段階의 感染魚로부터 原因菌의 檢出이 어렵거나 發病魚라 할지라도 原因菌을檢出하는데 4－5日이 所要되어 被害를 입고난以後에對策을 講究하게 되는 경우가 많다．또한 現地 調査의 경우 培地가 污染되기 쉽고 混合感染 및 憼死魚에 있어原因菌의 檢出이 어려울때가 많다．

그래서 魚病診斷에 數日이 要求되는 平板荼抹 培養法 보다 正確하고 讯速한 原因菌 檢出方法의 確立이要請되는 蔶情이다．本 研究에서는 疾病의 迅速 診断을爲站 直接螢光抗體法의 有用性을 養殖방어의 類結節症을 對象으로 檢討하였기 結果를 報告하는 바이다．

材料 및 方法

1．抗血清製造

保存中인 방어 由來 Pasteurella piscicida KNP－2를 $1.5 \% \mathrm{NaCl}$ 를 첨가한 Triptic soy agar（TSA，Difco）培地에 初代 培養하여 形成된 集落올 Brain heart infusion （BHI，Difco）培地에 接種하였다． $26^{\circ} \mathrm{C}$ 에서 48 時間振逿培養하여 여기에 포르마린을 0.4% 濃度되게 첨가해서 $4^{\circ} \mathrm{C}$ cold chember에 하룻밤 放直하였다．세척을 爲하여滅菌生理食鹽水 $(0.85 \% \mathrm{NaCl})$ 롤 이용하여 원심분리기 로 3 回 세척후 完全히 죽은 菌體를 吸光度計（Sprectro－ photometer，UV－visible．DMS 70，Varian）로． 280 nm波長에서 optical density（OD）가 2.0 되게 菌液을 멸가生理食尶水로 調整後 아주반트（Adjuvent，complete freund，Difco）와 $1: 1$ 되게 첨가한 後 주사기로 잘混合하여 免疫用 抗原을 만들었다．

免疫方法은 體重 2 kg 의 뉴질랜드 화이트種 토기 （ $\widehat{\delta}$ ）에 抗原을 주사기로 $2 \mathrm{~m} \ell$ 되게 取하여 토끼의 両쪽 뒷다리 발가락사이 皮下에 $0.4 \mathrm{~m} \ell$ 씩，둥쪽 眉胛骨 皮下에 나머지 $1.2 \mathrm{~m} \mathrm{\ell}$ 를 注射하였다．注射 1 個月後 闰方法으로

製造한 抗原을 同一部位에 再接種하여 10 日後에 試驗探血하여 抗體價의 增加总 確認한 後 採血하여 血清을分離하여 抗體精製時外지 $-20^{\circ} \mathrm{C}$ 에 보관하고，製造한抗血清은 microtiter法에 倲해 凝集素價를 調査했다．

2．免疫글로브린 精製

Johnstone and Thorpe（1982）의 方法에 따라 抗血清으로부터 免疫를로부린 G（immunoglobulin－G，IgG） 를 精製했다．즉 抗血清에 sodium sulfate를 조금씩 넣어最終 농도가 $18 \% ~(\mathrm{w} / \mathrm{v})$ 가 되도록 녹인다．混合된 血清을 $25^{\circ} \mathrm{C}$ 에서 30 分間 定値하여 盬析시킨 後 $25^{\circ} \mathrm{C}$ 에서 30 分間 3000 xg 로 원심분리하뗘 上層液을 버리고 침 전물에 증류수로 녹인후 다시 sodium sulfate를 14% （ w / v ）되게 첨가하여 同一方法으로 盬析시킨 後 원심 분리하여 上層液을 버리포 침전물에 증류수를 加해 녹인다．이것을 注射器로 取해 透析用주머니（dialyzer tubing，分子量 12,000 ）에 넣고 PBS （Phosphate buffe－ red saline， $\left.\mathrm{PH} 6.3: \mathrm{NaH}_{2} \mathrm{PO}_{4} 14.5 \mathrm{~g} / \ell, \mathrm{Na}_{2} \mathrm{HPO}_{4} 4.3 \mathrm{~g} / \ell\right)$ 로 $4^{\circ} \mathrm{C}$ cold chamber内에서 하룻밤 magnetic stirrer覞找하면서 투석하였다．同時에 闰一한 $\mathrm{PBS}(\mathrm{pH} 6.3)$ 로活性化시킨 DEAE－cellulose（fine mesh，Sigma）를 충 진하여 하릇밤 定値시킨 DEAE－cellulose ion exchange column $(1 \times 30 \mathrm{~cm})$ 에 透析된 試料를 얹고 同 $\mathrm{PBS}(\mathrm{pH}$ 6．3）로 溶出하여 Fraction collector（LKB）로 $2.0 \mathrm{~m} \ell$ 씩分画하였다．이 分画에 含有된 단백질量은 吸光度計䛈 280 nm 에서 OD 값을 測定하여 結定하였다．또한 各分画의 活性度는 microtiter法으로 凝集素價를 調査하 여 活性이 있는 IgG 가 이느 分画에서 溶出되는지를確認하였다．

3．螢光標識 抗䯣製造

DEAE－cellulose ion exchange chromatography에 依 해 分離된 IgG 溶液을 0.25 M carbonate buffer（ pH $\left.9.0, \mathrm{NaHCO}_{3} 19.74 \mathrm{~g} / \ell, \mathrm{Na}_{2} \mathrm{CO}_{3} 1.59 \mathrm{~g} / \ell\right)$ 로 $4^{\circ} \mathrm{C}$ cold cha－ mber 内에서 하룻밤 透析시킨 후 FITC（fluorescein iso－ thyocyanate，Sigma）를 $0.05 \mathrm{mg} / \mathrm{mg}$ protein 농도가 되게 넣어 잘 混合한후 $25^{\circ} \mathrm{C}$ 에서 2 時間 定置하여 結合시 켰다．未結合된 IgG와 分離하기 爲하여 Sephadex G－ 25 column chromatography를 사용하였다．使用된 se－
phadex G－25（Sigma）는 $\mathrm{PBS}(\mathrm{pH} 7.2, \mathrm{NaCl} 8.00 \mathrm{~g} / \ell, \mathrm{KCl}$ $0.20 \mathrm{~g} / \ell, \mathrm{KH}_{2} \mathrm{PO}_{4} 1.15 \mathrm{~g} / \ell$ ）에 活性化시킨 후 column（1 $\times 30 \mathrm{~cm})$ 에 충진하였다．洛出은 固 $\mathrm{PBS}(\mathrm{pH} 7.2)$ 를 사 용하여 $2,0 \mathrm{~m} \ell$ 씩 分画하였다．이들 分画은 吸光度計로 280 nm 및 495 nm 의 波長에서 各各 OD값을 測定한후螢光色素對蛋白 몰比 즉 FITC／protein molar ratio $=$ $\frac{2.87 \times \mathrm{A} 495}{\mathrm{~A} 280-0.35+\mathrm{A} 495}$ 의 값을 計算했다．
螢光物質（FITC）과 結合된 IgG 즉 螢光標識抗體〔以下標識抗體了 의 活性度는 microtiter 法으로 調査하였 다．

4．礬照菌株와의 交叉性 調査

試驗에 使用된 菌株는 Table 1 과 같이 방어 由來의 Vibrio anguillarum YT－85901．Streptococcus sp．ST－2 및 本 試驗에 抗原菌株로 使用한 Pasteurella piscicida $\mathrm{KNP}-2$ 와 넙치 由來의 Streptococcus sp ．ST－66 및 Edwardsiella tarda $\mathrm{FE}-36$ 이었다．이들 菌株와의 交设性을 알아보기 爲하여 各 培養菌을 PBS로 $1 \mathrm{mg} / \mathrm{m} \ell$濃度되게 菌液을 만들어 slide glass에 培養菌塗抹標本을 만들어 10% 아세톤에 固定시켰다．여기에 2 倍씩段階別로 1,024 倍까지 稀釋한 標識抗體률 各標本의塗抹部位에 듬뿍 떨어뜨려 溫氣가 유지되는 상자内에 넣어 $30^{\circ} \mathrm{C}$ 에서 30 分間 反應 시킨후 $\operatorname{PBS}(\mathrm{pH} 7.2)$ 를利用하여 5 分間씩 溶液올 바꾸어가면서 3 回세척후 선풍기로 건조시켜 螢光抗體標本을 만들었다．標本은封入 劑（Glycine $0.42 \mathrm{~g}, \mathrm{NaOH} 0.021 \mathrm{~g}, \mathrm{NaCl} 0.51 \mathrm{~g}, \mathrm{NaN}_{3}$ 0.03 g ，DW $30 \mathrm{~m} \ell$ ，glycerol $70 \mathrm{~m} \ell$ ）로 封入하여 어둡게 한 곳에서 䗗光顯微鏡（Nikon，Labophot）으로 観察하였 다．

5．自然感染魚에 對한 診断

1990年 7 月부터 10 月仆지 楚南 統營郡 住所 海上 가두리 養殖場（Fig．1）을 對象으로 直接螢光抗體法에依한 방어의 類結節症 診斷은，現地에서 試料魚의 患部，
 그라스에 試料別로 敬印塗抹하여 標本을 만든후 10% 아세톤에 10 分間 固定後 實驗室로 移送하였다．이렇게前處理된 標本을 上記 螢光抗體標本 製作方法乎 同— 한 方法으로 標本을 만들어 螢光願微鏡으로 檢鏡하였 다．

細菌培養法에 依한 診断은 直接螢光 抗體法에서 使用한 試料魚의 同一한 部位의 組織을 利用하여 現地 에서 無菌的으로 $1.5 \% \mathrm{NaCl}$ 을 첨가한 TSA 平板培養에塗抹 接種한 것을 實驗室로 移送하여 $26^{\circ} \mathrm{C}$ 에서 $48 \sim 72$時間 培養하였다．分離菌은 純粹 分離 培養過程을 通 하여 集落의 無色透明 및 粘秱性과 工 림 染色性，運動性等을 調査하여 簡易 同定하고 抗原菌株 KNP－2의抗血清과의 슬라이드 凝集反應으로 P．Piscicida임올確認하였다．

結 果

1． $\lg G$ 精製

製作한 抗血清의 抗原菌株 KNP－2에 對한 凝集素價는 1：1024였다．이 血清中에 있는 IgG 를 分離하기爲하여 DEAE－cellulose ion exchange chromatogra－ phy에 依해 溶出한 分画을 吸光度計로 波長 280 nm 에서 OD 값을 測定한 結果는 Fig．2와 같다．各 分画의 吸光度 값은 1 개의 peak를 나타내는 曲線이었으며 活性을

Table 1．Organisms used for test

organism	Strain number	Source	Fish
Vibrio anguillarum	YT -85901	NFRDA *	Yellowtail
Streptococcus sp．	ST -2	NFRDA	Yellowtail
Streptococcus sp．	ST -66	NFRDA	Flat fish
Edwardsiella tarda	FE -36	NFRDA	Flat fish
Pasteurella piscicida	KNP－2	NFRDA	Yellowtail

＊NFRDA ：National Fisheries Research and Development Agency

14 Rapid diagnosis of pseudotuberclosis

Fig．1．Location of sampling stations．

Fig．2．Elution profiles of anti－rabbit sera from DEAE－cellulose ion exchange chromatography column was eluted with 0.07 M sodium phosphate buffer $(\mathrm{pH} 6.3)$ and the volume of each fraction was 2.0 ml Optical density at $280 \mathrm{~nm} \operatorname{Titer}\left(1: 2^{\text {n }}\right.$ ）

나타내는 分画은 $8,9,10,11,12$ 였다．이 中 活性이 가장 높은 分画은 peak 直前 部分인 分画 9 였으며

抗體價는 256 이었다．여기서 活性이 높은 IgG 을 나타낸分画 9 와 10 을 取해서 標識抗骾製造에 使用하였다．

2．標識抗體精製

分離한 IgG에 FITC를 結合시킨후 sephadex G－25 gel chromatography를 通해 溶出된 分画을 280 nm 와 495 nm 波長에서 吸光度률 測定하여 나타낸 曲線은 Fig． 3 과 같다．分画의 吸光度 値는 2 개의 peak pattern을 나타내었고 標識抗體의 活性이 높은 部分은 첫번째 peak였으며 $工$ 中에서도 分画 78．9에서 活性을 나타 내었다．여기서 가장 높은 活性을 나타내는 分画은 7 이었으며 活性이 높은 7 과 8 을 取하여 直接螢光抗體法에 使用하였으며 이것의 FITC／protein의 mole比는

8．8－9．5이었다．

3．參照菌株와의 交叉性

參照菌株에 抗原菌株 P．Piscicida KNP－2 標識抗體를 反應시킨 結果는 Table 2 와 같다．V．anguillarum YT85901，Str．sp．ST－2 와 Str．sp．ST－66에서는 標識抗體의 稀析 倍數가 $1 \sim 2$ 仆지는 螢光强度가 認定 되었으나， $2 \sim 4$ 倍 以上 稀析할 셩우 反隹이 認定되지 않았다．또한 抗原菌株인 P．piscicida KNP－2 와는 128倍까지 䖝光強度가 認定되었다．

Fig．3．Elution profiles of FITC－labeled anti－rabbit Ig antibody from sephadex G－25 Gel filtration chromatogra－ phy．The column was eluted with $\operatorname{PBS}(\mathrm{pH} 7.2)$ and the volume of each fraction was 2.0 ml optical density optical density at 280 nm optical density at 495 nm

Table 2．The staining titer of Pasteurella piscicida KNP－2 fluorescent antibody against various fish pathogens．

| Antigen | Dilution of fluorescent antibody | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 |
| V．anguillarum YT 85901 | + | - | - | - | - | - | - | - | - | |
| Streptococcus sp．st－2 | + | + | - | - | - | - | - | - | - | |
| Streptococcus sp．st－66 | + | + | - | - | - | - | - | - | - | |
| E．tarda FE－36 | - | - | - | - | - | - | - | - | - | |
| P．piscicida KNP－2 | +++ | +++ | +++ | +++ | +++ | ++ | + | - | - | |

+++ ：intense fluorescence，++ ：clear fluorescence，$+:$ distinct fluorescence，

- ：no definite fluorescence．

16 Rapid diagnosis of pseudotuberclosis

4．自然感染魚에 對한 診斷

가두리 養殖場에서 방어를 對象으로 類結節症 診斷試驗 結果는 Table 3과 같다．

表에서와 같이 調査地域에 있어 類結節症은 8 月부터發生한 것으로 나타났으며 8 月에 있어 昆里 地域에 서는 本疾病의 發生으로 많은 憼死를 일으켰으나 工外地域에 있어서는 整死現象이 없었다． 9 月以後에는 일 시에 大量斃死는 없었으나 累積憼死量이 增加하는 경 향을 보였다．이는 各養殖場이 類結節症外 連鎖球菌에混合感染되어 憼死量이 增加한 것으로 생각된다．

考 察

疾病을 迅速하게 診斷하는 代表的인 方法中에 免疫螢光抗體法은 醫學 및 鬹䣽學分野에서 使用해 오든 것으로 魚病分野에의 適用은 最近에 와서 이루어 지고 있다．細菌性 疾病에 있어 菌의 檢出이 어럽거나 培養하는데 時間이 많이 所要되는 연어과 어류의 細菌性疾病診斷에는 Johnson and wobeser（1974），Bullock and stuckey（1975），Laidler（1980）Ernie and Michael （1987），R．J．Pascho et al．（1987）等의 報告가 있고類結節症에 對하여는 Kitao and Kimura（1974），Ku－
suda and kawahara（1987）等의 報告가 있다．
방어의 類結節症은 外兒上 뚜렷한 症狀이 없이 죽 기때문에 適切한 對策을 講究해 보지도 못하고 大量의被書를 입게되는 경우가 많다．本疾病의 경우 初期感染魚는 外見狀 診斷이 곤란할 뿐 아니라 보통 使用하는 4゙板涂抹 培養法은 診斷하는되 4～5日이 所要되기 때문에 이 期間동안 病은 重症으로 進展되어 많은 被害를 입게 된따．또한 類結節原因菌인 P．piscicida는平板培地上에서 培養 速度가 느리기때문에 混台感染의 경우 純糐分離가 곤란하여 診断上 어려움이 많다．그 래서 疾病의 早期에 迅速診断新는 効果的인 診斷方法 이 要求된 實情이다．

本 筫驗에 使用呫 抗原菌株 P．piscicida KNP－2는 1988～1989年㟬에 本 試験의 現地診斷과 同一한 地域의 養殖방어예서 分離한 菌株中의 代表菌株로써 同一한 血清型을 4타내어 免疫塋光抗體法의 適用이 可能한 것으로 나타났다．

IgG 分離時 分画曲線上 높는 活性을 나타내는 部分이 peak 部分인 것은 Johnstone and Thorpe（1982）의結果㘰 一致하는 경향을 보였으며 IgG 로부터 製作한標識抗體의 FITC／protein의 mole比 8．8～9．5는 Johns－ tone and Thrope（1982）의 2～5 와는 差異를 나타내 었다．

Table 3．Detection of the causative bacteria of pseudotuberculosis from yellowtail using the fluorescent antobody technique（FAT）and cultural method

Sampling	Date of sampling	No．of fish tested	FAT		Culture	
			No．of		No．of	
			positive	negative	positive	negative
Konri	Jul．18， 1990	12	0	12	0	12
Haglim	Jul．18， 1990	5	0	5	0	5
Konri	Aug．13， 1990	15	9	6	2	13
Haglim	Aug．13， 1990	4	1	3	0	4
Chuamdo	Aug．13， 1990	5	2	3	0	5
Konri	Sep．21， 1990	5	3	2	1	4
Haglim	Sep．21， 1990	8	1	7	0	8
Konri	Oct．18， 1990	5	4	1	3	2
Haglim	Oct．18， 1990	6	2	4	0	6
Chuamdo	Oct．18， 1990	5	2	3	1	4

Table 4．Detection of pathogenic bacteria from yellowtail farm occurred mass mortality

Bacteria	＊Number of detected by		${ }^{* * N u m b e r ~ o f ~ d e t e c t e d ~ b y ~}$	
	FAT	culture	FAT	culture
Vibrio anguillarum	$0 / 5$	$0 / 5$	$0 / 5$	$0 / 5$
Streptococcus sp．	$5 / 5$	$0 / 5$	$5 / 5$	$5 / 5$
Pasteurella piscicida	$5 / 5$	$0 / 5$	$3 / 5$	$2 / 5$

＊dead fish，yellowtail $(70-100 \mathrm{~g})$
＊＊live fish，＇yellowtail $(75-100 \mathrm{~g})$

參照菌株의 交议性은 標識抗體를 4 倍以上 稀釋할 경우 交议性을 除去할 수 있었ㄱ工ᅩ 抗原菌株 P．piscicida KNP－2에 對하여는 $1: 32$ 까지 明確한 螢光强度를 나 타냄으로 診断試驗에는 標識抗體를 32 倍로 稀釋하여使用하는 것이 타당한 것으로 나타났다．

自然感染魚에 對한 診斷試驗에 있어 8 月에 採集한試料魚는 平板塗抹培羲法으로 類結節原因菌의 檢出이 곤란하였는데 이는 昆里 地域을 除外한 학림．추암도地域 養殖場은 初期感染 狀態로써 菌量이 적을 뿐 아 니라．Vibrio spp．等 優點菌의 出現으로 集落 形成이 늦은 P．piscicida는 集落이 形成되지 않든가 優點細菌에 덮혀버려 分離가 곤란하였다．그러나 螢光抗體法으로 는 初期 感染魚에서도 感染菌體의 確認이 可能하였다 （plate，Fig．2）．

1990年8月에 많은 慗死魚가 發生한 昆里 地域 방어垠殖場에 있어 죽은지 12 時間以内의 방어를 對象으로病原菌．을 調査한 結果는 Table 4 와 같다．

試料魚는 Strepto．sp．및 P．piscicida로 混合感染되어慜死한 것으로 나타났다．

菌檢出 結果에서 보면 平板塗抹 培養法으로는 전연病原菌의 檢出이 不可郆였으나 螢光抗法으로는 可能 하였다．이것은 Vibrio spp．를 포함한 海産常存 細菌 들의 번무로 因하여 菌纷離가 不可能했기 때문이다． 그러나 同一 가두리内에 있는 生存魚에 對해서는 Str． sp．및 P．piscicida가 平板涂抹 培養法으로는 檢出되 었으나 螢光抗體法보다는 多少 檢出率이 낮은 경향을 보였다．

또한 螢光抗體法은 現場에서 移送하여온 塗抹標本을 2 時間内에 原因菌을 確認衣ㄹ 수 있어 魚病迅速診斷에本 方法의 適用이 効果的인 것으로 나타났다．

要 約

방어의 類結節症 迅速診斷을 爱한 免疫螢光抗體法의有用性을 敛討하기 위하여 原因菌으로 免疫된 抗血清 에서 免疫글로브린 G （IgG）률 分離하여 FITC標識 抗體를 精製하였다．

精製뇐 標識抗體는 䖝光强度가 $1: 32$ 였으며 이 標識抗體䟫 利用하여 1990年7月부터 10月까지 慶南統營郡 所在 방어 養殖場올 對象으로 類結節症診斷試驗을 實施咭果 直接螢光抗體法으로 2 時間内에原因菌의 迅速診斷이 可能하고 菌檢出面에서도 平板浲抹 培養法보다 效果的인 것으로 나타넜다．

參考文硐

Bullock G．L．and H．M．Stuckey（1975）：Fluorescent antibody identification and detection of the Co－ rynebacterum causing kidney disease of sal－ monids．J．Fish．Res．Board can．，32（11）， 2220 -2227.

Ernie G．H．Lee and M．R．Gordon（1986）：Immunof－ luorescence screening of Renibacterium salmo－ ninarum in the tissues and eggs of farmed chinook salmon spawners．
Johnson G．R．and Wobeser G．（1974）：Indirect fluo－ rescent antibody technique for detection of RM bacterium of Rainbow tront（Salmo gairdneri）． J．Fish．Res．Board can．，31（2），1957－1959．
Johnstone A．and R．Thorpe（1982）：Immunochemis－ try in practice．Black and scientific publications．

18 Rapid diagnosis of psoudotuberclosis

Oxford，The Great Britain，P． 259.
Kimball D．C．and T．M．William（1971）：An immu－ nofluorescent technique for detecting Aeromo－ nas liquefaciens in fish utilized in Lunar expo－ sure studies．Trans．Amer．Fish．Soc．，3，575－ 578.

Kitao T．and M．Kimura（1974）：Rapid diagnosis of pseudo tuberclosis in yellowtail by means of the Fluorescent Antibody Technique．Bull．Jap． Soc．Sci．Fish．，49（9），889－893．
楠田理一•河原榮二郎（1987）：直接よび間接螢光抗

體法によるづり主要病原細菌の識別。 日水誌， 53（3），389－394．
Loidler L．A．（180）：Detect and identification of the bacterial disease（BKD）organism by the indi－ rect fluorescent antibody technique．J．fish di－ sease，3，67－89．
infected yellowtail．x657．
2．Direct fluorescent antibody staining of an impres－ sion smear preparation of the spleen taken from infected yellowtail．x657．

Explanation of Plate

1. Direct fluorescent antibody staining of an impression smear preparation of the kidney taken from infected yellowtail. x657.
2. Direct fluorescent antibody staining of an impression smear preparation of the spleen taken from infected yellowtail. x657.
