• Title/Summary/Keyword: fluid-foundation interaction

Search Result 37, Processing Time 0.022 seconds

Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations (부분 탄성지지된 유체 저장 원통셸의 자유진동)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.

Dynamic Analysis of Structure-Fluid-Soil Interaction Problem of a Bridge Subjected to Seismic-Load Using Finite Element Method (유한요소법을 이용한 지진하중을 받는 교량의 구조물-유체-지반 동적 상호작용해석)

  • You, Hee-Yong;Park, Young-Tack;Lee, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.67-75
    • /
    • 2008
  • In construction facilities such as bridges, the fluid boundary layer(or water film) is formed at the structure-soil interface by the inflow into the system due to rainfall or/and rising ground-water. As a result, the structure-soil interaction(SSI) state changes into the structure-fluid-soil interaction(SFSI) state. In general, construction facilities may be endangered by the inflow of water into the soil foundation. Thus, it is important to predict the dynamic SFSI responses accurately so that the facilities may be properly designed against such dangers. It is desired to have the robust tools of attaining such a purpose. However, there has not been any report of a method for the SFSI analyses. The objective of this study is to propose an efficient method of finite element modelling using the new interface element named hybrid interface element capable of giving reasonable predictions of the dynamic SFSI response. This element enables the simulation of the limited normal tensile resistance and the tangential hydro-plane behaviour, which has not been preceded in the previous studies. The hybrid interface element was tested numerically for its validity and employed in the analysis of SFSI responses of the continuous bridge subjected to seismic load under rainfall or/and rising ground-water condition. It showed that dynamic responses of the continuous bridge resting on direct foundation may be amplified under rainfall condition and consequently lead to significant variation of stresses.

A Computer Program for 2-D Fluid-Structure-Soil Interaction Analysis (2차원 유체- 구조물-지반 상호작용해석 전산프로그램)

  • 김재민
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.427-434
    • /
    • 2000
  • This paper presents a computer program for a 2-D fluid-structure-soil interaction analysis. With this computer program the fluid can be modeled by a spurious free 4-node displacement-based fluid element which uses rotational penalty and mass projection technique in conjunction with the one point reduced integration scheme to remove the spurious zero energy modes. The structure and near field soil are discretized by the standard finite elements while the unbounded far field soil are discretized by the standard finite elements while the unbounded far field soil is represented by the frequency dependent dynamic infinite elements. Sine this method models directly the fluid-structure-soil system it can be applied to the dynamci analysis of 2-D liquid storage structure with complex geometry. For the purpose of verification dynamic analyses for tanks on a rigid foundation and on compliant embankment are carried out. Comparison of the present results with those by ANSYS program shows good agreement.

  • PDF

The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank (3차원 구형 액체 저장 Tank의 Rocking응답)

  • 김재관;박진용;진병무;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 1998
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of translational and/or rocking motions on the seismic response of flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation for the dynamics of 3-D rectangular tanks subjected to the translational and/or rocking motion is abtained by applying Rayleigh-Ritz method. The dynamic stiffness matrices of a rigid rectangular foundation resting on the surface of a stratum overlaid bedrock are calculated by hyperelement method. The seismic responses of 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation for the fluid-tank system with the dynamic stiffness matrix of th rigid surface foundation.

  • PDF

Dynamic response of concrete gravity dams using different water modelling approaches: westergaard, lagrange and euler

  • Altunisik, A.C.;Sesli, H.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.429-448
    • /
    • 2015
  • The dams are huge structures storing a large amount of water and failures of them cause especially irreparable loss of lives during the earthquakes. They are named as a group of structures subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on the dam should be reflected more accurately in the structural analyses to determine the real behavior as soon as possible. Different mathematical and analytical modelling approaches can be used to calculate the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the dynamic response of concrete gravity dams using different water modelling approaches such as Westergaard, Lagrange and Euler. For this purpose, Sariyar concrete gravity dam located on the Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main principals and basic formulation of all approaches are given. After, the finite element models of the dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To determine the structural response of the dam, the linear transient analyses are performed using 1992 Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses and maximum-minimum principal strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches.

Analysis of Fluid-Structure Interaction for Development of Korean Inflatable Rubber Dams for Small Hydropower (소수력 발전용 한국형 공기주입식 고무댐 개발을 위한 유체-구조 연성 해석)

  • Hwang, Tae-Gyu;Kim, Jin-Gu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1221-1230
    • /
    • 2008
  • Inflatable rubber dams are used for controlling flood, impounding water for recreations, preventing beach erosions, diverting water for irrigations, and generating hydropower. They are long, flexible, inflated with air, cylindrical structures on a rigid horizontal foundation such as concrete. The dam is modeled as an elastic shell inflated with air. The mechanical behaviors of the inflated dam model were investigated by using the finite element method. The analysis process such as One Way Coupling Fluid-Structure Interaction consists of two steps. First, the influences of the fluid side were investigated, viz, the shape changes of the inflated rubber dam due to the fluid motions was captured when the height of the dam was 30cm with air pressure 0.01MPa, at which the pressure distributions over the surface of the dam were calculated. And next, the structural deformations were calculated using the pressure distributions. The initial inlet velocity for flow field was set to 0.1m/s. The structural deformation behaviors were investigated. The final research goal is to develop a Korean Inflatable Rubber Dam to be used for generating small hydropower.

Wave propagation in a generalized thermo elastic plate embedded in elastic medium

  • Ponnusamy, P.;Selvamani, R.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.13-26
    • /
    • 2012
  • In this paper, the wave propagation in a generalized thermo elastic plate embedded in an elastic medium (Winkler model) is studied based on the Lord-Schulman (LS) and Green-Lindsay (GL) generalized two dimensional theory of thermo elasticity. Two displacement potential functions are introduced to uncouple the equations of motion. The frequency equations that include the interaction between the plate and foundation are obtained by the traction free boundary conditions using the Bessel function solutions. The numerical calculations are carried out for the material Zinc and the computed non-dimensional frequency and attenuation coefficient are plotted as the dispersion curves for the plate with thermally insulated and isothermal boundaries. The wave characteristics are found to be more stable and realistic in the presence of thermal relaxation times and the foundation parameter. A comparison of the results for the case with no thermal effects shows well agreement with those by the membrane theory.