• Title/Summary/Keyword: fluid system

Search Result 5,249, Processing Time 0.039 seconds

Effect of Blood Donation on the Donor's Hemorheological Properties (헌혈이 헌혈자의 혈유변학적 지표에 미치는 영향)

  • Lee, Byoung Kwon
    • The Korean Journal of Blood Transfusion
    • /
    • v.29 no.3
    • /
    • pp.229-239
    • /
    • 2018
  • The circulatory system is closely related to the inter-relationship between the anatomy of the heart and blood vessels, and the fluid dynamic properties of blood. The physical properties of blood, which affect blood flow, are called hemorheologic factors. Hemorheologic factors, such as blood viscosity and erythrocyte aggregation, are influenced mainly by hematocrit. A higher hematocrit level results in an increase in blood viscosity, erythrocyte aggregation, which impedes the circulation itself, and tissue oxygenation. An excess of serum ferritin causes injury to vascular endothelial cells and erythrocytes via oxygen free radicals. In addition, an excess of blood can aggravatee the adverse effects of the hemorheologic parameters and induce atherogenesis, microcirculatory disturbances, and major cardiovascular events. A preventive and therapeutic approach with a phlebotomy or blood donation has been stimulated by the knowledge that blood loss, such as regular donations, is associated with significant decreases in key hemorheologic variables, including blood viscosity, erythrocyte aggregation, hematocrit, and fibrinogen. Major cardiovascular events have been improved in regular blood donors by improving blood flow and microcirculation by decreasing the level of oxidative stress, improving the hemorheologic parameters, and reducing the serum ferritin level. Confirmation of the positive preventive and therapeutic effects of blood donations on cardiovascular disease by a well-designed and well-controlled Cohort study may be good news to patients with cardiovascular disease or at risk of these diseases, as well as patients who require a transfusion.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

A Study on the Uniform Mixing of Ammonia-Air with the Change of Ammonia Supply Device Shape in a De-NOx System (탈질설비에서 암모니아 혼합기의 형상에 따른 암모니아-공기 균일 혼합에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.20-26
    • /
    • 2019
  • Selective catalytic reduction(SCR) method is widely used among various methods for reducing nitrogen oxides in combustion devices of coal power plant. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal shape of ammonia-dilution air mixing device in a ammonia injection grid. The distribution characteristics of flow and $NH_3$ concentration had been elucidated for the reference shape of ammonia mixing device(Case 1). In the mixing device of Case 1, it could be seen that $NH_3$ distribution was shifted to the wall opposite to the inlet of the ammonia injection pipe. For the improvement of $NH_3$ distribution, the case(Case 2) with closing one upper injection hole and 4 side injection holes, the case(Case 3) with installing horizontal plate at the upper of ammonia injection pipe, the case(Case 4) with installing horizontal plate and horizontal arc plate at he upper of ammonia injection pipe were investigated by analyzing flow and $NH_3$ concentration distributions. From the present study, it was found that the % RMS of $NH_3$ for Case 4 was 4.92%, which was the smallest value among four cases, and the range of $R_{NH3}$ also has the optimally uniform distribution, -10.82~8.34%.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.

A Study on the Element Technologies in Flame Arrester of End Line (선박의 엔드라인 폭연방지기의 요소기술에 관한 연구)

  • Pham, Minh-Ngoc;Choi, Min-Seon;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2019
  • An end-line flame arrester allows free venting in combination with flame protection for vertical vent applications. End-line flame arresters are employed in various fields, especially in shipping. In flame arresters, springs are essential parts because the spring load and the spring's elasticity determine the hood opening moment. In addition, the spring has to work under a high-temperature condition because of the burning gas flame. Therefore, it is necessary to analyze the mechanical load and elasticity of the spring when the flame starts to appear. Based on simulations of the working process of a specific end-line flame arrester, a thermal and structural analysis of the spring is performed. A three-dimensional model of a burned spring is built using computational fluid dynamics (CFD) simulation. Results of the CFD analysis are input into a finite element method simulation to analyze the spring structure. The research team focused on three cases of spring loads: 43, 93, and 56 kg, correspondingly, at 150 mm of spring deflection. Consequently, the spring load was reduced by 10 kg after 5 min under a $1,000^{\circ}C$ heat condition. The simulation results can be used to predict and estimate the spring's load and elasticity at the burning time variation. Moreover, the obtained outcome can provide the industry with references to optimize the design of the spring as well as that of the flame arrester.

A Study on Heat Transfer and Pressure Drop Characteristics according to Block Size and Turbulence Generator's Placement in a Horizontal Channel (블록 크기 및 난류발생기 배치에 따른 수평채널내의 열전달 및 압력강하 특성에 관한 연구)

  • Seo, Kyu-Won;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.639-647
    • /
    • 2019
  • Recently, as the semiconductor integration technology due to miniaturization and high density of electronic equipment have developed, it is importantly recognized the application of thermal control system in order to release inner heat generated from chips, modules, In this study, we considered the heat transfer and pressure drop characteristics in a horizontal channel with four blocks using k-${\omega}$ SST turbulence model During CFD (Computational Fluid Dynamics) analysis, the parameters applied block width, block height, heat source and turbulence generator placement etc. As the boundary conditions of analysis, the channel inlet temperature and flow velocity were respectively 300 K and 3.84 m/s, the heat flux was $358W/m^2$. As a result, the heat transfer performance was decreased as the block width ratio (w/h) was increased, while it was increased as the block height ratio (h/w) was increased. In addition, as the arrangement of heat source size was increased to high heat flux from low heat flux, it was influenced by heat source size and the heat transfer coefficient showed a tendency to increase, When the turbulence generator was installed in the upper part of block No. 1 position the closely to the channel entrance, the heat transfer characteristics was greatly influenced on the whole of four heating blocks. and in oder to consider the pressure drop characteristics, we are able to select the most appropriate turbulence generator's position.

An Empirical Study of Soundproof wall with Reduced Wind Load (풍하중 저감형 방음판의 실증 연구)

  • Choi, Jin-Gyu;Lee, Chan-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.272-278
    • /
    • 2018
  • Traffic volume has been greatly increasing due to urban development and the improvement of living standards, and many complaints are being raised due to the increasing road noise. As a countermeasure against these problems, highly soundproof walls are installed on the sides of roads. However, the ability to bear wind loads is a major design requirement for soundproof walls, which contributes to the exponential increases in construction costs and restricts the height of the walls. The aim of this study is to improve the performance of soundproof walls and to dramatically reduce wind loads while maintaining excellent price competitiveness. Based on Helmholz's resonator theory, a new concept is proposed for a ventilation-type soundproofing plate that can pass through a fluid like air and reduce noise. A full-scale metal soundproofing plate was produced to satisfy the quality standards of highways by conducting a sound-pressure transmission-loss test, wind tunnel test, and material quality test. To verify the reliability, the wall was manufactured and installed, and the sound insulation effect was examined by measuring the noise over time. In the future, ventilated soundproof walls on roads could create a pleasant living environment due to the high noise-insulation effect.

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

Korean Red Ginseng affects ovalbumin-induced asthma by modulating IL-12, IL-4, and IL-6 levels and the NF-κB/COX-2 and PGE2 pathways

  • Lee, Soon-Young;Kim, Min-Hee;Kim, Seung-Hyun;Ahn, Taeho;Kim, Sung-Won;Kwak, Yi-Seong;Cho, Ik-Hyun;Nah, Seung-Yeol;Cho, Seung-Sik;Park, Kyung Mok;Park, Dae-Hun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.482-489
    • /
    • 2021
  • Background: Asthma is an incurable hyper-responsive disease of the pulmonary system that is caused by various allergens, including indoor and outdoor stimulators. According to the Global Asthma Network, 339 million people suffered from asthma in 2018, with particularly severe forms in children. Numerous treatments for asthma are available; however, they are frequently associated with adverse effects such as growth retardation, neurological disorders (e.g., catatonia, poor concentration, and insomnia), and physiological disorders (e.g., immunosuppression, hypertension, hyperglycemia, and osteoporosis). Methods: Korean Red Ginseng has long been used to treat numerous diseases in many countries, and we investigated the anti-asthmatic effects and mechanisms of action of Korean Red Ginseng. Eighty-four BALB/c mice were assigned to 6 treatment groups: control, ovalbumin-induced asthma group, dexamethasone treatment group, and 3 groups treated with Korean Red Ginseng water extract (KRGWE) at 5, 25, or 50 mg/kg/day for 5 days. Anti-asthmatic effects of KRGWE were assessed based on biological changes, such as white blood cell counts and differential counts in the bronchoalveolar lavage fluid, serum IgE levels, and histopathological changes in the lungs, and by examining anti-asthmatic mechanisms, such as the cytokines associated with Th1, Th2, and Treg cells and inflammation pathways. Results: KRGWE affected ovalbumin-induced changes, such as increased white blood cell counts, increased IgE levels, and morphological changes (mucous hypersecretion, epithelial cell hyperplasia, inflammatory cell infiltration) by downregulating cytokines such as IL-12, IL-4, and IL-6 via GATA-3 inactivation and suppression of inflammation via NF-κB/COX-2 and PGE2 pathways. Conclusion: KRGWE is a promising drug for asthma treatment.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.