DOI QR코드

DOI QR Code

Effect of Blood Donation on the Donor's Hemorheological Properties

헌혈이 헌혈자의 혈유변학적 지표에 미치는 영향

  • Lee, Byoung Kwon (Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine)
  • 이병권 (연세대학교 의과대학 내과학교실 심장내과)
  • Received : 2018.10.22
  • Accepted : 2018.11.07
  • Published : 2018.12.31

Abstract

The circulatory system is closely related to the inter-relationship between the anatomy of the heart and blood vessels, and the fluid dynamic properties of blood. The physical properties of blood, which affect blood flow, are called hemorheologic factors. Hemorheologic factors, such as blood viscosity and erythrocyte aggregation, are influenced mainly by hematocrit. A higher hematocrit level results in an increase in blood viscosity, erythrocyte aggregation, which impedes the circulation itself, and tissue oxygenation. An excess of serum ferritin causes injury to vascular endothelial cells and erythrocytes via oxygen free radicals. In addition, an excess of blood can aggravatee the adverse effects of the hemorheologic parameters and induce atherogenesis, microcirculatory disturbances, and major cardiovascular events. A preventive and therapeutic approach with a phlebotomy or blood donation has been stimulated by the knowledge that blood loss, such as regular donations, is associated with significant decreases in key hemorheologic variables, including blood viscosity, erythrocyte aggregation, hematocrit, and fibrinogen. Major cardiovascular events have been improved in regular blood donors by improving blood flow and microcirculation by decreasing the level of oxidative stress, improving the hemorheologic parameters, and reducing the serum ferritin level. Confirmation of the positive preventive and therapeutic effects of blood donations on cardiovascular disease by a well-designed and well-controlled Cohort study may be good news to patients with cardiovascular disease or at risk of these diseases, as well as patients who require a transfusion.

순환계는 혈액의 흐름이 원활하게 되도록 그 해부학적 구조와 혈류의 물리학적 특성이 연결되어있다. 혈액의 흐름에 영향을 주는 혈액의 물리학적 특성을 혈유변학적 인자(Hemorheologic factors)라 하며, 혈액의 점도(blood viscosity) 및 적혈구 응집도(erythrocyte aggregation)와 같은 혈유변학적 특성은 헤마토크리트(hematocrit; Hct)와 밀접한 관계를 가진다. 헤마토크리트가 높을수록 혈액 점도가 증가하고 적혈구 응집도는 증가하며 순환을 저해하고 조직에 산소 전달 능력을 방해한다. 혈청 페리틴은 과도하게 있을 경우 산화유리기(oxygen free radial)를 통하여 혈관 내피세포(vascular endothelial cell)와 혈구 세포(blood cell)에 산화 손상을 유발하여 심혈관계 손상을 유발한다. 이러한 기전을 근거로 사혈 혹은 헌혈을 심혈관계 질환의 예방 및 치료에 응용하려는 시도가 오랫동안 있었다. 사혈은 의학에 있어 오랜 역사를 가지면서 특히 한방의 치료적 개념으로 최근까지도 사용되고 있으나 그 과학적 근거가 불충분하고 아직까지 논란의 여지도 있어 근거 중심의 의학을 근간으로 하는 의학에서는 도외시되어왔다. 하지만 혈액량이 증가하면 혈유변학적 인자들(hemorheological factors) 역시 악화되면서 대 순환에서 동맥경화의 발생 및 진행에 영향을 주고, 모세순환(microcirculation)을 악화시키는 것으로 알려져 있으며 심뇌혈관 사건에 영향을 주는 것으로 보고되고 있다. 정기적인 헌혈자(regular blood donors)에게 혈유변학적 인자들을 저명하게 호전시키고 과도한 철분의 함량을 줄여서 산화유리기에 의한 혈구 및 내피세포의 산화 손상을 줄임으로써, 순환계내에서 혈액순환을 촉진시킬 수 있다는 증거들이 보고되고 있다. 헌혈의 효과가 심혈관계 질환에 이익이 된다는 확고한 장기적 코호트 연구결과가 도출된다면 절대적으로 헌혈 혈액량이 부족한 현실과 심혈관계 질환의 예후를 호전시킬 수 있다는 측면에서 중요한 역할을 할 수 있다고 생각된다.

Keywords

Acknowledgement

Supported by : Yonsei University College of Medicine

References

  1. Holsworth RE Jr, Cho YI, Weidman JJ, Sloop GD, St Cyr JA. Cardiovascular benefits of phlebotomy: relationship to changes in hemorheological variables. Perfusion 2014;29:102-16 https://doi.org/10.1177/0267659113505637
  2. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost 2003;29:435-50 https://doi.org/10.1055/s-2003-44551
  3. Price MJ, Berger PB, Teirstein PS, Tanguay JF, Angiolillo DJ, Spriggs D, et al. Standard- vs high-dose clopidogrel based on platelet function testing after percutaneous coronary intervention: the GRAVITAS randomized trial. JAMA 2011;305:1097-105 https://doi.org/10.1001/jama.2011.290
  4. Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ, et al. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol 2013;62:2261-73 https://doi.org/10.1016/j.jacc.2013.07.101
  5. Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Hemorheological abnormalities in stable angina and acute coronary syndromes. Clin Hemorheol Microcirc 2008;39:43-51
  6. Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Microcirculatory dysfunction in cardiac syndrome X: role of abnormal blood rheology. Microcirculation 2008;15:451-9 https://doi.org/10.1080/10739680701797090
  7. Marton Z, Horvath B, Alexy T, Kesmarky G, Gyevnar Z, Czopf L, et al. Follow-up of hemorheological parameters and platelet aggregation in patients with acute coronary syndromes. Clin Hemorheol Microcirc 2003;29:81-94
  8. Neumann FJ, Katus HA, Hoberg E, Roebruck P, Braun M, Haupt HM, et al. Increased plasma viscosity and erythrocyte aggregation: indicators of an unfavorable clinical outcome in patients with unstable angina pectoris. Br Heart J 1991;66:425-30 https://doi.org/10.1136/hrt.66.6.425
  9. Toth K, Habon T, Horvath I, Mezey B, Juricskay I, Mozsik G. Hemorheological and hemodynamical parameters in patients with ischemic heart disease at rest and at peak exercise. Clin Hemorheol Microcirc 1994;14:329-38
  10. Zorio E, Murado J, Arizo D, Rueda J, Corella D, Simo M, et al. Haemorheological parameters in young patients with acute myocardial infarction. Clin Hemorheol Microcirc 2008;39:33-41
  11. Furukawa K, Abumiya T, Sakai K, Hirano M, Osanai T, Shichinohe H, et al. Increased blood viscosity in ischemic stroke patients with small artery occlusion measured by an electromagnetic spinning sphere viscometer. J Stroke Cerebrovasc Dis 2016;25:2762-9 https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.031
  12. Li RY, Cao ZG, Li Y, Wang RT. Increased whole blood viscosity is associated with silent cerebral infarction. Clin Hemorheol Microcirc 2015;59:301-7 https://doi.org/10.3233/CH-131760
  13. Moh JH, Cho YI, Cho DJ, Kim D, Banerjee RK. Influence of non-Newtonian viscosity of blood on microvascular impairment. Clin Hemorheol Microcirc 2014;57:111-8
  14. Kim D, Cho DJ, Cho YI. Reduced amputation rate with isovolemic hemodilution in critical limb ischemia patients. Clin Hemorheol Microcirc 2017;67:197-208 https://doi.org/10.3233/CH-120108
  15. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035-42 https://doi.org/10.1001/jama.282.21.2035
  16. Cho M, Shin S, Kwon HM, Chung H, Lee BK. Effect of clinical and RBC hemorheological parameters on myocardial perfusion in patients with type 2 diabetes mellitus. Biorheology 2014;51:215-26
  17. Baskurt OK, Yavuzer S. Some hematological effects of oxidants. In: Nriagu JO, Simmons MS. Environmental oxidants. New York: John Wiley, 1994:405-23
  18. Baskurt OK, Temiz, A Meiselman HJ. Effect of superoxide anions on red blood cell rheologic properties. Free Radic Biol Med 1998;24:102-10 https://doi.org/10.1016/S0891-5849(97)00169-X
  19. Shu C. Biophysical behavior of red cells in suspension. In: Surgenor DM, Bishop CW. The red blood cell. 3rd ed. New York: Academic Press, 1975:1031-133
  20. Skalak R, Chien S. Handbook of engineering. New York: McGraw-Hill, 1987
  21. Fantl P, Ward HA. Molecular weight of human fibrinogen derived from phosphorus determinations. Biochem J 1965;96:886-9
  22. Wilson PW. Established risk factors and coronary artery disease: the Framingham study. Am J Hypertens 1994;7:7S-12S https://doi.org/10.1093/ajh/7.7.7S
  23. Sullivan JL. Iron and the sex difference in heart disease risk. Lancet 1981;1:1293-4
  24. Sullivan JL. The iron paradigm of ischemic heart disease. Am Heart J 1989;117:1177-88 https://doi.org/10.1016/0002-8703(89)90887-9
  25. Howes PS, Zacharski LR, Sullivan J, Chow B. Role of stored iron in atherosclerosis. J Vasc Nurs 2000;18:109-14; quiz 115-6. https://doi.org/10.1067/mvn.2000.111614
  26. Lian J, Xu L, Huang Y, Le Y, Jiang D, Yang X, et al. Meta-analyses of HFE variants in coronary heart disease. Gene 2013;527:167-73 https://doi.org/10.1016/j.gene.2013.06.034
  27. Pardo Silva MC, Njajou OT, Alizadeh BZ, Hofman A, Witteman JC, van Duijn CM, et al. HFE gene mutations increase the risk of coronary heart disease in women. Eur J Epidemiol 2010;25:643-9 https://doi.org/10.1007/s10654-010-9489-6
  28. Cook JD, Finch CA, Smith NJ. Evaluation of the iron status of a population. Blood 1976;48:449-55 https://doi.org/10.1182/blood.V48.3.449.449
  29. Sun L, Franco OH, Hu FB, Cai L, Yu Z, Li H, et al. Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly Chinese. J Clin Endocrinol Metab 2008;93:4690-6 https://doi.org/10.1210/jc.2008-1159
  30. Pham NM, Nanri A, Yi S, Kurotani K, Akter S, Foo LH, et al. Serum ferritin is associated with markers of insulin resistance in Japanese men but not in women. Metabolism 2013;62:561-7 https://doi.org/10.1016/j.metabol.2012.07.025
  31. Piperno A, Trombini P, Gelosa M, Mauri V, Pecci V, Vergani A, et al. Increased serum ferritin is common in men with essential hypertension. J Hypertens 2002;20:1513-8 https://doi.org/10.1097/00004872-200208000-00013
  32. Mateo-Gallego R, Calmarza P, Jarauta E, Burillo E, Cenarro A, Civeira F. Serum ferritin is a major determinant of lipid phenotype in familial combined hyperlipidemia and familial hypertriglyceridemia. Metabolism 2010;59:154-8 https://doi.org/10.1016/j.metabol.2009.06.021
  33. Abril-Ulloa V, Flores-Mateo G, Sola-Alberich R, Manuel-y-Keenoy B, Arija V. Ferritin levels and risk of metabolic syndrome: meta-analysis of observational studies. BMC Public Health 2014;14:483 https://doi.org/10.1186/1471-2458-14-483
  34. Ha JY, Kim MK, Kang S, Nam JS, Ahn CW, Kim KR, et al. Serum ferritin levels are associated with arterial stiffness in healthy Korean adults. Vasc Med 2016;21:325-30 https://doi.org/10.1177/1358863X16629728
  35. Sung KC, Kang SM, Cho EJ, Park JB, Wild SH, Byrne CD. Ferritin is independently associated with the presence of coronary artery calcium in 12,033 men. Arterioscler Thromb Vasc Biol 2012;32:2525-30 https://doi.org/10.1161/ATVBAHA.112.253088
  36. Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 1992;86:803-11 https://doi.org/10.1161/01.CIR.86.3.803
  37. Klipstein-Grobusch K, Koster JF, Grobbee DE, Lindemans J, Boeing H, Hofman A, et al. Serum ferritin and risk of myocardial infarction in the elderly: the Rotterdam study. Am J Clin Nutr 1999;69:1231-6 https://doi.org/10.1093/ajcn/69.6.1231
  38. Depalma RG, Hayes VW, Chow BK, Shamayeva G, May PE, Zacharski LR. Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: a substudy of the Iron (Fe) and Atherosclerosis study (FeAST) trial. J Vasc Surg 2010;51:1498-503 https://doi.org/10.1016/j.jvs.2009.12.068
  39. van der A DL, Grobbee DE, Roest M, Marx JJ, Voorbij HA, van der Schouw YT. Serum ferritin is a risk factor for stroke in postmenopausal women. Stroke 2005;36:1637-41 https://doi.org/10.1161/01.STR.0000173172.82880.72
  40. Arntz HR, Perchalla G, Roll D, Heitz J, Schafer JH, Schroder R. Blood rheology in acute myocardial infarction: effects of high-dose i.v. streptokinase compared to placebo. Eur Heart J 1992;13:275-80 https://doi.org/10.1093/oxfordjournals.eurheartj.a060159
  41. Sezer M, Oflaz H, Goren T, Okcular I, Umman B, Nisanci Y, et al. Intracoronary streptokinase after primary percutaneous coronary intervention. N Engl J Med 2007;356:1823-34 https://doi.org/10.1056/NEJMoa054374
  42. Ascherio A, Willett WC, Rimm EB, Giovannucci EL, Stampfer MJ. Dietary iron intake and risk of coronary disease among men. Circulation 1994;89:969-74 https://doi.org/10.1161/01.CIR.89.3.969
  43. Meyers DG, Strickland D, Maloley PA, Seburg JK, Wilson JE, McManus BF. Possible association of a reduction in cardiovascular events with blood donation. Heart 1997;78:188-93 https://doi.org/10.1136/hrt.78.2.188
  44. Salonen JT, Tuomainen TP, Salonen R, Lakka TA, Nyyssonen K. Donation of blood is associated with reduced risk of myocardial infarction. The Kuopio ischaemic heart disease risk factor study. Am J Epidemiol 1998;148:445-51 https://doi.org/10.1093/oxfordjournals.aje.a009669
  45. Finch CA, Cook JD, Labbe RF, Culala M. Effect of blood donation on iron stores as evaluated by serum ferritin. Blood 1977;50:441-7 https://doi.org/10.1182/blood.V50.3.441.441
  46. Jiang R, Ma J, Ascherio A, Stampfer MJ, Willett WC, Hu FB. Dietary iron intake and blood donations in relation to risk of type 2 diabetes in men: a prospective cohort study. Am J Clin Nutr 2004;79:70-5 https://doi.org/10.1093/ajcn/79.1.70
  47. Zheng H, Cable R, Spencer B, Votto N, Katz SD. Iron stores and vascular function in voluntary blood donors. Arterioscler Thromb Vasc Biol 2005;25:1577-83 https://doi.org/10.1161/01.ATV.0000174126.28201.61
  48. Meyers DG, Jensen KC, Menitove JE. A historical cohort study of the effect of lowering body iron through blood donation on incident cardiac events. Transfusion 2002;42:1135-9 https://doi.org/10.1046/j.1537-2995.2002.00186.x
  49. Harrison MJ, Pollock S, Kendall BE, Marshall J. Effect of haematocrit on carotid stenosis and cerebral infarction. Lancet 1981;18:114-5
  50. Strand T, Asplund K, Eriksson S, Hagg E, Lithner F, Wester PO. A randomized controlled trial of hemodilution therapy in acute ischemic stroke. Stroke 1984;15:980-9 https://doi.org/10.1161/01.STR.15.6.980
  51. Chang TS, Jensen MB. Haemodilution for acute ischaemic stroke. Cochrane Database Syst Rev 2014;(8):CD000103
  52. Licker M, Mariethoz E, Costa MJ, Morel D. Cardioprotective effects of acute isovolemic hemodilution in a rat model of transient coronary occlusion. Crit Care Med 2005;33:2302-8 https://doi.org/10.1097/01.CCM.0000182827.50341.18
  53. Neema PK, Vijayakumar A, Manikandan S, Rathod RC. Infrarenal abdominal aortic aneurysm repair in presence of coronary artery disease: optimization of myocardial stress by controlled phlebotomy. Ann Card Anaesth 2009;12:133-5 https://doi.org/10.4103/0971-9784.53445
  54. Suarez-Ortegon MF, McLachlan S, Price AH, Fernandez-Balsells M, Franch-Nadal J, Mata-Cases M, et al. Decreased iron stores are associated with cardiovascular disease in patients with type 2 diabetes both cross-sectionally and longitudinally. Atherosclerosis 2018;272:193-9 https://doi.org/10.1016/j.atherosclerosis.2018.03.028
  55. von Haehling S, Jankowska EA, van Veldhuisen DJ, Ponikowski P, Anker SD. Iron deficiency and cardiovascular disease. Nat Rev Cardiol 2015;12:659-69 https://doi.org/10.1038/nrcardio.2015.109
  56. Numasawa Y, Ueda I, Sawano M, Kuno T, Kodaira M, Noma S, et al. Relation of baseline hemoglobin level to in-hospital outcomes in patients who undergo percutaneous coronary intervention (from a Japanese multicenter registry). Am J Cardiol 2018;121:695-702 https://doi.org/10.1016/j.amjcard.2017.12.007
  57. Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL, et al. Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial. JAMA 2007;297:603-10 https://doi.org/10.1001/jama.297.6.603
  58. Stainsby D, Brunskill S, Chapman CE, Doree C, Stanworth S. Safety of blood donation from individuals with treated hypertension or non-insulin dependent type 2 diabetes-a systematic review. Vox Sang 2010;98:431-40 https://doi.org/10.1111/j.1423-0410.2009.01275.x