• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.027 seconds

Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure (수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho;Cho, Hyun-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

Numerical Analysis on the Freezing Process of Internal Water Flow in a L-Shape Pipe (L자형 배관내 물의 결빙에 관한 해석적 연구)

  • Lee, Chung Ho;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.144-150
    • /
    • 2018
  • In this study, the freezing process of L-shaped pipe exposed to the outside was investigated numerically by considering the mushy zone of freezing water. From the numerical results, it was found that the flow was outwardly directed due to the influence of the L-shaped bending part in the outside exposed part of the pipe, and the ice was formed in the shape of longitudinal corrugation on the wall surface of the pipe after the bending part. It is confirmed that this phenomenon is caused by the venturi effect due to the freezing as seen in connection with the velocity distribution in the pipe. It is found that the remelting phenomenon at the end of the freezing section occur simultaneously during the process of forming the ice in the pipe section. In regard of the factors affecting freezing, it was found that the thickness of the freezing layer is increased as the exposed pipe surface temperature is decreased, and the pipe surface temperature had a significant effect on the change of the freezing layer thickness. At the same time, it was found that the freezing layer becomes relatively thin when the water inflow rate is increased. This phenomenon was caused by reducing the exposure time of freezing water due to the vigorous flow convection of the water fluid.

Effects of Meteorological and Reclaiming Conditions on the Reduction of Suspended Particles (기상 조건과 매립 조건이 비산 먼지 발생에 미치는 영향)

  • Choi, Jae-Won;Lee, Young-Su;Kim, Jae-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1423-1436
    • /
    • 2010
  • The effects of meteorological and reclaiming conditions on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the k-$\varepsilon$ turbulence closure scheme based on the renormalization group (RNG) theory. Twelve numerical experiments with different meteorological and reclaiming conditions are performed. For identifying the meteorological characteristics of the target area and providing the inflow conditions of the CFD model, the observed data from the automatic weather station (AWS) near the target area is analyzed. Complicated flow patterns such as flow distortion, horse-shoe vortex, recirculation zone, and channeling flow appeared due to the topography and buildings in the domain. Specially, the flow characteristics around the reclamation area are affected by the reclaiming height, reclaiming size and windbreak height. Reclaiming height affected the wind speed above the reclaiming area. Windbreak induces more complicated flow patterns around the reclaiming area as well as within the reclaiming area. In front of the windbreak, flow is distorted as it impinges on the windbreak. As a result, upward flow is generated there. Behind the windbreak, a secondary circulation, so called, a recirculation zone is generated and flow is reattached at the end of the recirculation zone (reattachment point). At the lower part of the recirculation zone, there is a reverse flow toward the windbreak. Flow passing to the reattachment point starts to be recovered. Total amounts of suspended particles are calculated using the frictional and threshold frictional velocities, erosion potential function, and the number of surface disturbance. In the case of a 10 m-reclaiming and northerly wind, the amount of suspended particles is largest. In the presence of 5 m windbreak, the friction velocity above the reclaiming area is largely reduced. As a result, the total amount of the suspended particles largely decreases, compared to the case with the same reclaiming and meteorological conditions except for the windbreak The calculated suspended particle amounts are used as the emission rate of the dispersion model simulations and the dispersion characteristics of the suspended particles are analyzed.

A CFD Study of Oil Spill Velocity from Hole in the Hull of Oil Tanker (유조선 선체 파공에 따른 원유 유출 유속의 CFD 연구)

  • Choi, Dooyoung;Lee, Jungseop;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.71-71
    • /
    • 2018
  • Sea pollution accidents have been occurred due to the increase of marine ship traffic. Oil spill from the hull hole induced by tanker collision results in the huge sea pollution. Proper and prompt reaction on such oil spill disaster is needed to minimize the damage. Thru-hull emergency wood plug is typically used to manually close small holes, while it is required to develop some mechanical devices for closing large holes in the hull due to huge fluid pressure. Accurate estimation of oil discharge and velocity from such holes are important to develop proper device to control hull hole damage. High resolution CFD modeling investigation on the configurations of hull hole of 7.5 m initial depth and 30 cm diameter, which was observed in the oil spill accident of the Hebei Sprit off the west coast of Korea in 2007, has been carried out to compute the oil spill velocity distribution in terms of flow depth. Friction loss due to the viscous flow and the discharge coefficient of crude oil with specific gravity SG = 0.85 and viscosity of $4-12cP(mPa{\cdot}s)$ at the temperature of $20^{\circ}C-100^{\circ}C$ are presented in terms of Reynolds number based on the results of high-resolution CFD modeling.

  • PDF

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.

An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio (흐름과 임의반사율을 갖는 부분중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung;Na, Seung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.27-44
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in finite and infinite thicknesses including shallow has been developed under flow and partial standing wave with arbitrary reflection ration coexisting field at a constant water depth condition. In the analytical solution, a field was simply transited to a coexisting field of progressive wave and flow when reflection ratio was 0 and to a coexisting field of fully standing wave and flow when reflection ratio was 1. Based on the Biot's consolidation theory, the seabed was assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution was compared with the existing results and was verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses were examined under various given values of reflection ratio, flow velocity, incident wave's period and seabed thickness. From this study, it was confirmed that the dynamic response of seabed was quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves. It was also confirmed that dynamic response significantly depends on the magnitude of reflection ratio.

Development and application of automation algorithm for optimal parameter combination in two-dimensional flow analysis model (2차원 흐름해석모형의 매개변수 최적조합결정 자동화 알고리즘의 개발과 적용)

  • An, Sehyuck;Shin, Eun-taek;Song, Chang Geun;Park, Sungwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1007-1014
    • /
    • 2023
  • Two-dimensional flow analysis, a fundamental component of hydrodynamics, plays a pivotal role in numerically simulating fluid behavior in rivers and waterways. This modeling approach heavily relies on parameters such as eddy viscosity and roughness coefficient to accurately represent flow characteristics. Therefore, combination of appropriate parameters is very important to accurately simulate flow characteristics. In this study, an automation algorithm was developed and applied to find the optimal combination of parameters. Previously, when applying a two-dimensional flow analysis model, former researchers usually depend on the empirical approach, which causes many difficulties in finding optimal variable values. Using the experimental data, we tracked errors according to the combination of various parameters and applied the algorithm that can determine the optimal combination of parameters with the Python language. The automation algorithm can easily determine the most accurate combination by comparing the flow velocity error values among the two-dimensional flow analysis results among the combinations of 121 (11×11) parameters. In the perspective of utilizing automation algorithm, there is an expected high utility in promptly and straightforwardly determining the optimal combination of parameters with the smallest error.

A Study on the Hood Performance Improvement of Pickling Tank using CFD (전산유체역학을 이용한 산세조 후드 성능 개선에 관한 연구)

  • Jung, Yu-Jin;Park, Ki-Woo;Shon, Byung-Hyun;Jung, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.593-601
    • /
    • 2014
  • In this study, we investigated the methods of improving the capturing ability of acid fume by assessing the performance of slot-type external hood installed on both sides of an open surface tank for acid washing process. A field survey and the results of computational fluid dynamics revealed that capturing performance of existing hoods is very poor. To solve such problem, 'push-pull hood' that pushes from one side of an open surface tank and pulls on the other side was suggested. The initial prediction was that if a push-pull hood is used, the acid fume of an acid-washing tank surface could be moved towards the hood through the push flow. However, this study has confirmed that if the push flow velocity becomes too high, it could spread to other areas due to flooding from the hood. Therefore, if the push air supply is maintained at around 25 $m^3/min$(push 10 m/s), proper control flow is formed on the surface of a tank and acid fume that stayed at the upper part of the tank is smoothly captured toward the hood, significantly enhancing the capturing performance.

Performance Analysis of a Portable Horizontal Axis Hydro Turbine by Computational Fluid Dynamics (CFD를 통한 휴대용 수평축 수차의 성능해석)

  • Park, Ji-Hoon;Baek, Sang-Hwa;Choi, Hyen-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.561-568
    • /
    • 2020
  • A performance analysis was conducted according to changes in inflow velocity and the tip speed ratio of a portable horizontal-axis hydro turbine that can be used for marine leisure sports and outdoor activities by using the commercial computational fluid dynamics software ANSYS CFX. By using the analysis result and flow field analysis, the design was reviewed and the performance of the device was confirmed. In addition, data necessary to improve the performance of the hydro turbine were acquired by performing an additional performance analysis according to the variable blade pitch angle. The results among the numerical analysis cases show that the highest performance at all inflow velocities and blade pitch angles if achieved at a tip speed ratio of 4. The output power was found to be 30 W even under some conditions below the design flow rate. Among the numerical analysis cases, the highest output power (~ 85 W) and power coefficient (~ 0.30) were observed at an inlet flow rate of 1.5 m/s, a blade pitch angle of 3°, and a tip speed ratio of 4.

Behavioral Analysis of Silt Protectors in Seawater Using the Mass-Spring Model (질량-스프링 모델을 이용한 해수 중 오탁방지막 거동해석)

  • Lee, Choon-Woo;Kim, Ok-Sam;Shin, Hyun-Chool;Hwang, Doo-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.194-199
    • /
    • 2017
  • When sea tide and wave velocity change, the behavior of silt protectors underwater changes, and a hydraulic force exceeding the anchor wave force is applied. In this study, the movement mechanism of a silt protector has been analyzed using the mass-spring method. The initial position of the silt protector was in the Jindo area near Gwangpo Port (742-1, Gyupori, Chongdo-myeon, Jindo-gun, Jeonnam, Korea). The tension required to exceed the holding power of the anchor was 0.05 m/s at 318 sec., 0.15 m/s at 77 sec., 0.25 m/s at 43 sec., and 0.3 m/s at 37 sec.. As the anchor started to move from the sea floor and the tide speed increased to 0.01 m/s, anchor movement start time shortened by an average of 11.2 sec.. Compared with when tide was the only affecting factor, the silt protector and anchor were found to have moved 19.7 % at 0.1 m/s, 7.6 % at 0.15 m/s, 5.8 % at 0.2 m/s, 4.3 % at 0.25 m/s and 2.8 % at 0.3 m/s, showing an increase. When wave effect was added to the tide, anchor movement started when the flow rate was slow 7.6 % of the time. With a high flow velocity, anchor movement started without any significant difference less than 4.3 % of the time. When tide speed exceeded 0.13 m/s and the direction of the waves matched, the silt protector was not able to perform due to collisions with surrounding sea structures. When installing a silt protector, the fluid flow situation and the silt protector situation must be carefully analyzed using the mass-spring method to apply the result found in this study.