DOI QR코드

DOI QR Code

Behavioral Analysis of Silt Protectors in Seawater Using the Mass-Spring Model

질량-스프링 모델을 이용한 해수 중 오탁방지막 거동해석

  • Lee, Choon-Woo (Division of marine Production System management, Pukyong National University) ;
  • Kim, Ok-Sam (Faculty of Marine Technology, Chonnam National University) ;
  • Shin, Hyun-Chool (Faculty of Marine Technology, Chonnam National University) ;
  • Hwang, Doo-Jin (Faculty of Marine Technology, Chonnam National University)
  • 이춘우 (부경대학교 수산과학대학 해양생산시스템관리학부) ;
  • 김옥삼 (전남대학교 수산해양대학 해양기술학부) ;
  • 신현출 (전남대학교 수산해양대학 해양기술학부) ;
  • 황두진 (전남대학교 수산해양대학 해양기술학부)
  • Received : 2016.12.19
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

When sea tide and wave velocity change, the behavior of silt protectors underwater changes, and a hydraulic force exceeding the anchor wave force is applied. In this study, the movement mechanism of a silt protector has been analyzed using the mass-spring method. The initial position of the silt protector was in the Jindo area near Gwangpo Port (742-1, Gyupori, Chongdo-myeon, Jindo-gun, Jeonnam, Korea). The tension required to exceed the holding power of the anchor was 0.05 m/s at 318 sec., 0.15 m/s at 77 sec., 0.25 m/s at 43 sec., and 0.3 m/s at 37 sec.. As the anchor started to move from the sea floor and the tide speed increased to 0.01 m/s, anchor movement start time shortened by an average of 11.2 sec.. Compared with when tide was the only affecting factor, the silt protector and anchor were found to have moved 19.7 % at 0.1 m/s, 7.6 % at 0.15 m/s, 5.8 % at 0.2 m/s, 4.3 % at 0.25 m/s and 2.8 % at 0.3 m/s, showing an increase. When wave effect was added to the tide, anchor movement started when the flow rate was slow 7.6 % of the time. With a high flow velocity, anchor movement started without any significant difference less than 4.3 % of the time. When tide speed exceeded 0.13 m/s and the direction of the waves matched, the silt protector was not able to perform due to collisions with surrounding sea structures. When installing a silt protector, the fluid flow situation and the silt protector situation must be carefully analyzed using the mass-spring method to apply the result found in this study.

오탁방지막이 바닷물 속에 설치되어 있을 때 조류와 파도가 변할 때 움직임과 앵커 파주력을 초과하는 유체력이 작용할 경우의 이동 메카니즘을 질량-스프링법으로 해석하였다. 설치 위치는 전남 진도군 임회면 굴포리 동령개 포구 해역이다. 앵커의 파주력을 초과하는 장력은 0.05 m/s에서는 318초 후에 도달하였고, 0.15 m/s에서는 77초, 0.25 m/s에서는 43초, 0.3 m/s에서는 37초 후에 앵커가 움직이기 시작하여, 조류 속도가 0.01 m/s로 증가함에 따라서 평균 11.2 초 정도, 앵커 이동시작 시간이 단축되고 있었다. 조류만 작용할 때와 파랑이 추가될 때의 차이점은 유속이 느릴 경우, 앵커의 이동이 시작되는 시간의 차이가 7.6 % 정도 발생하였으나, 유속이 빠른 경우는 4.3 % 미만으로 큰 차이가 없이 앵커 이동이 시작되는 것을 알 수 있었다. 조류 속도가 0.13 m/s를 초과하고 파도의 방향이 일치하면 주변의 해저 구조물과의 충돌로 인해 오탁방지막 성능이 정상적으로 작동하지 않을 수 있으니, 오탁방지막을 바다에 설치할 때 해수의 흐름 상황 등을 질량-스프링 방법으로 면밀하게 검토해야 한다.

Keywords

References

  1. Hong, N. S., G. Y Kim and Y. K. Kang(2008), Three-dimensional numerical model for flow with silt protector, The Korean Society of Ocean Engineers, Vol. 22, No. 1, pp.1-7.
  2. Hong, N. S. and J. Y. Kim(2002), Behavior of mooring line of silt protector according to the change of sea level, The Korean Society of Coastal Ocean Engineers, Vol 14, No. 4, pp. 232-239.
  3. Kee, S. T.(2002), Submerged membrane breakwaters : A rahmen type system composed of horizontal and vertical membranes, The Korean Society of Ocean Engineers, Vol. 16, No. 1, pp. 7-14.
  4. Lee, C. W., J. H. Lee, B. J. Cha, H. Y. Kim and J. H. Lee(2005), Physical modeling for underwater flexible systems dynamic simulation, Ocean Engineering, Vol. 32, pp. 331-347. https://doi.org/10.1016/j.oceaneng.2004.08.007
  5. Lee, C. W., J. H. Lee, M. Y. Choe and G. H. Lee(2010), Design and simulation tools for moored underwater flexible structures, Korea Journal Aqua. Sci., Vol. 43, pp. 159-168.
  6. Lee, J. H., L. Karlsen and C. W. Lee(2008), A method for improving the dynamic simulation efficiency of underwater flexible structures by implementing non-active points in modelling, ICES Journal of Marine Science, Vol. 65, No. 9, pp. 1552-1558. https://doi.org/10.1093/icesjms/fsn126