• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.028 seconds

Heat Transfer by an Oscillating Flow in a Circular Pipe with Sinusoidal Wall Temperature Distributions (벽온도분포가 정현파인 원관에서 왕복유동에 의한 열전달 해석)

  • 이대영;박상진;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3208-3216
    • /
    • 1993
  • Heat transfer characteristics of the laminar oscillating flow in a circular pipe have been studied under the condition that the wall temperature of the pipe is distributed sinusoidally with the axial direction. The axial velocity was assumed to be uniform in radial direction and the temperature field was analyzed by means of the perturbation method. The results show that the difference between wall and section-time-averaged fluid temperature increases as the oscillating frequency increases and eventually converges to a constant value which is determined by the ratio of swept distance to the characteristic length of wall temperature distribution. Also it is shown that the dominant variable in the heat transfer process when swept distance ratio is greater than 1 is not thermal Womersley number(F) but thermal Womersley number multiplied by the square root of swept distance ratio. The variation of the time-averaged Nusselt number is obtained as a function of F. The results indicate that Nusselt number is proportional to $F_{\epsilon}^{1/2}$ when both of F and .epsilon. are much greater than 1.

Comparison of various k-ε models and DSM applied to flow around a high-rise building - report on AIJ cooperative project for CFD prediction of wind environment -

  • Mochida, A.;Tominaga, Y.;Murakami, S.;Yoshie, R.;Ishihara, T.;Ooka, R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.227-244
    • /
    • 2002
  • Recently, the prediction of wind environment around a building using Computational Fluid Dynamics (CFD) technique comes to be carried out at the practical design stage. However, there have been very few studies which examined the accuracy of CFD prediction of flow around a high-rise building including the velocity distribution at pedestrian level. The working group for CFD prediction of wind environment around building, which consists of researchers from several universities and private companies, was organized in the Architectural Institute of Japan (AIJ) considering such a background. At the first stage of the project, the working group planned to carry out the cross comparison of CFD results of flow around a high rise building by various numerical methods, in order to clarify the major factors which affect prediction accuracy. This paper presents the results of this comparison.

Computations of Natural Convection Flow Using Hermite Stream Function Method (Hermite 유동함수법에 의한 자연대류 유동 계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2009
  • This paper is a continuation of the recent development on Hermite-based divergence free element method and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square enclosure with temperature difference across the two sides. The basis functions for the velocity field consist of the Hermite function and its curl while the basis functions for the temperature field consists of the Hermite function and its gradients. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x and y derivatives. This paper presents numerical results for Ra = 105, and compares with those from a stabilized finite element method developed by Illinca et al. (2000). The comparison has been done on 32 by 32 uniform elements and the degree of approximation of elements used for the stabilized finite element are linear (Deg. 1) and quadratic (Deg. 2). The numerical results from both methods show well agreements with those of De vahl Davi (1983).

Analysis of Flow in a Microchannel Branch by Using Micro-PIV Method (마이크로 PIV를 이용한 마이크로 분지관에서의 유동해석)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1015-1021
    • /
    • 2004
  • Micro-resolution Particle Image Velocimetry(Micro-PIV) was used to measure the flow in a micro-branch(Micro-Bypass). In this paper, effects of particle lump at the tip of a Micro-branch and difficulties of Micro-PIV measurements for microfluidics with branch passage were described. Micro-bypass was composed of a straight channel(200(100)${\mu}$m width ${\times}$ 80${\mu}$m height) and two branches which has 100(50)${\mu}$m width ${\times}$ 80${\mu}$m height. One of branches was straight and the other was curved. Experiments were performed at three regions along streamwise direction(entrance, middle and exit of branch) and five planes along vertical direction (0, ${\pm}$10, ${\pm}$20 ${\mu}$m) for the range of Re=0.24, 1.2, 2.4. Numerical simulation was done to compare with the measurements and understand the effects of particle lump at the tip of branch. And another fluid(3% poly vinyl Alcohol aqueous solution) were adapted for this study, so there were no particle sticking. In this case, we could get velocity difference between straight and curved branches.

Three-Dimensional Analysis of the Coupled Turbulent Flow and Solidification During a Continuous Casting Process with Electromagnetic Brake (전자기 브레이크를 적용한 연속주조공정에서의 난류유동 및 응고의 3차원 해석)

  • Kim, Deok-Soo;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1254-1264
    • /
    • 1999
  • A three-dimensional coupled turbulent fluid flow and solidification process were analyzed in a continuous casting process of a steel slab with Electromagnetic Brake(EMBR). A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. The electromagnetic field was described by Maxwell equations. Tile application of EMBR to the mold region results in the decrease of the transfer of superheat to the narrow face, the increase of temperature in free surface region and most liquid of submold region, and the higher temperature gradient near the solidifying shell. The increasing magnetic flux density effects mainly to the surface temperature of the solidifying shell of narrow face, hardly to the one of wide face. It is seen that in the presence of EMBR a thicker solidifying shell is obtained at the narrow face of the slab.

Heat Transfer by Liminar Oscillating Pipe Flow in Thermally Developing Region (원관내 층류 왕복유동에 의한 열적발달영역에서의 열전달)

  • 이대영;박상진;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.997-1008
    • /
    • 1994
  • Heat transfer by laminar oscillating flow in a circular pipe has been studied analytically. The general solution with respect to the arbitrary wall boundary condition is obtained by superposing the fluid temperatures with the sinusoidal wall temperature distributions. The fulid temperature distributions are two dimensional, but uniform flow assumption is used to simplify the velocity distribution. The heat transfer characteristics in the thermally developing regions are analyzed by applying the general solution to the two cases of thermal boundary conditions in which the wall temperature and wall heat flux distributions have a square-wave form, respectively. The results show that the length of the thermally developing region becomes larger in proportion to the oscillation frequency at slow oscillation and eventually approaches to the value comparable to the swept distance as the frequency increases. The time and cross-section averaged Nusselt number in the developing region is inversely proportional to the square root of the distance from the position where the wall boundary condition is changed suddenly. In the developed region, Nusselt number is only determined by the oscillation frequency.

Study on Simulation of Dust Diffusion at Open Pit Mines (노천광산의 발파분진 비산영역 예측에 관한 연구)

  • 김복윤;이상권;조영도;김임호
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.194-199
    • /
    • 1998
  • This research was aimed to figure out the trend of dust diffusion at open pit limestone mine for assessing the environmental impacts on the high voltage power transmission line. It is rather easy to assess the dust generation and size distribution of limestone dust at the blasting site, but it is very hard to assess the expected area of dust diffusion and amount of dust fall by the distances from the dust source. In this research, a 3-dimensional fluid dynamic simulation software (3D-Flow) was used for analysing the above mentioned matters to assess the impacts to the insulators on the transmission tower by the blasting dust. It was verfied that the 3D-Flow is reliable tool for simulating dust movement, and the limestone dust is not much hazardous to the power transmission line.

  • PDF

Numerical Analysis Method for the Flow Analysis in the Engine Cylinder (엔진실린더내의 유동해석을 위한 수치해석방법)

  • Choi J. W.;Lee Y. H.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • In general, FDM(finite difference method) and FVM(finite volume method) are used for analyzing the fluid flow numerically. However it is difficult to apply them to problems involving complex geometries, multi-connected domains, and complex boundary conditions. On the contrary, FEM(finite element method) with coordinates transformation for the unstructured grid is effective for the complex geometries. Most of previous studies have used commercial codes such as KIVA or STAR-CD for the flow analyses in the engine cylinder, and these codes are mostly based on the FVM. In the present study, using the FEM for three-dimensional, unsteady, and incompressible Navier-Stokes equation, the velocity and pressure fields in the engine cylinder have been numerically analyzed. As a numerical algorithm, 4-step time-splitting method is used and ALE(arbitrary Lagrangian Eulerian) method is adopted for moving grids. In the Piston-Cylinder, the calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

An optimum design study of interlacing nozzle by using Computational Fluid Dynamics

  • Juraeva Makhsuda;Ryu Kyung-Jin;Kim Sang-Dug;Song Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.395-397
    • /
    • 2006
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. The effect of various interlacing nozzle geometries on the interlacing process was studied. The geometries of interlacing nozzles with single or multiple air inlets located across the width of yarn channels are investigated. The basis case is the yarn channel, with a perpendicular main air inlet in the middle. Other cases have main air inlets, slightly inclined double sub air inlets, The yarn channel cross sectional shapes are either semicircular or rectangular shapes. The compressed impinging jet from the main air inlet hole hits the opposing bottom wall of the yarn channel, is divided into two branches, joins with the compressed air coming out from sub air inlet at the bottom and creates two free jets at both ends of the yarn channel. The compressed air movement in the cross-section consists of two opposing directional vortices. The CFD-FASTRAN flow parallel solver was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this pater.

  • PDF

3-D Flow Analysis for Compression Molding of Fiber-Reinforced Polymeric Composites with Ratio of Extensional & Shear Viscosity (인장 및 전단점성비를 고려한 섬유강화 플라스틱 복합재의 압축성형에 있어서 3차원 유한요소해석)

  • 조선형;윤두현;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 1999
  • The compression molding is widely used in the automotive industry to produce products that are large, thin, lightweight and stiff. The molded product is formed by squeezing a fiber-reinforced plastic composites. During a molding process of fiber reinforced thermoplastic composites, control of filling patterns in mold, orientation and distribution of fibers are needed to predict the effects of molding parameters on the flow characteristics. It is the objective of this paper to develop an isothermal compression molding simulation that can handle both thin and thick charges and motion of the flow front, and can predict pressure distributions and accurate velocity gradients. The composites are treated as an incompressible Newtonian fluid. The effects of slip parameter $\alpha$ and extensional/shear viscosity ratio $\zeta$ on the mold filling parameters are also discussed.

  • PDF