• Title/Summary/Keyword: fluid flow velocity

Search Result 1,740, Processing Time 0.031 seconds

Analysis of Contaminant Transport in the Ground using the Lattice-Boltzmann Method (격자 볼츠만 방법에 의한 지반 내 오염물질의 거동 분석)

  • Kang, Dong Hun;Yun, Tae Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.267-274
    • /
    • 2012
  • The conventional approach to evaluate the contaminant transport in soils adopts the macro-scale implementation while the pore configuration and network is a dominant factor to determine the fate of contaminant. However, the observation of fate and transport at pore scale may not be readily approachable because of the computational expenses to solve Navier-Stokes equation. We herein present the 2D Lattice-Boltzmann method that enables to assess the local fluid velocity and density efficiently for the case of single phase and multi-components. The solute fate spatio-temperal space is explicitly determined by the advection of fluid flow. Two different types of idealized pore space provides the path of fluid. Also, solute transport, the velocity field and average concentration of solute are computed in steady state. Results show that the pore geometry such as tortuosity mainly affect the solute fate. It highlights the significance of the pore configuration and shape in granular soils and rock discontinuity in spite of the equivalent porosity.

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Analysis of Stokes flows by Carrera unified formulation

  • Varello, Alberto;Pagani, Alfonso;Guarnera, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.363-383
    • /
    • 2018
  • One-dimensional (1D) models of incompressible flows, can be of interest for many applications in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of incompressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which are functions of the 1D computational domain coordinate. As a consequence, the governing equations can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation order. Several numerical examples are considered for validating this novel methodology, including simple Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into non-conventional computational domains. The attention is mainly focused on the use of hierarchical McLaurin polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the pipe section. The preliminary results show the great advantages in terms of computational costs of the proposed method. Furthermore, they provide enough confidence for future extensions to more complex fluid-dynamics problems and fluid-structure interaction analysis.

Effects of Impeller Geometry on the 11α-Hydroxylation of Canrenone in Rushton Turbine-Stirred Tanks

  • Rong, Shaofeng;Tang, Xiaoqing;Guan, Shimin;Zhang, Botao;Li, Qianqian;Cai, Baoguo;Huang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.890-901
    • /
    • 2021
  • The 11α-hydroxylation of canrenone can be catalyzed by Aspergillus ochraceus in bioreactors, where the geometry of the impeller greatly influences the biotransformation. In this study, the effects of the blade number and impeller diameter of a Rushton turbine on the 11α-hydroxylation of canrenone were considered. The results of fermentation experiments using a 50 mm four-blade impeller showed that 3.40% and 11.43% increases in the conversion ratio were achieved by increasing the blade number and impeller diameter, respectively. However, with an impeller diameter of 60 mm, the conversion ratio with a six-blade impeller was 14.42% lower than that with a four-blade impeller. Data from cold model experiments with a large-diameter six-blade impeller indicated that the serious leakage of inclusions and a 22.08% enzyme activity retention led to a low conversion ratio. Numerical simulations suggested that there was good gas distribution and high fluid flow velocity when the fluid was stirred by large-diameter impellers, resulting in a high dissolved oxygen content and good bulk circulation, which positively affected hyphal growth and metabolism. However, a large-diameter six-blade impeller created overly high shear compared to a large-diameter four-blade impeller, thereby decreasing the conversion ratio. The average shear rates of the former and latter cases were 43.25 s-1 and 35.31 s-1, respectively. We therefore concluded that appropriate shear should be applied in the 11α-hydroxylation of canrenone. Overall, this study provides basic data for the scaled-up production of 11α-hydroxycanrenone.

A Study on the Design Analysis and Test of a Ballute Type Parachute of the Smart Submunition (지능형 자탄의 벌루트형 낙하산 설계 해석 및 시험에 관한 연구)

  • Lee, Sang-Kil;Lee, Sang-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.23-31
    • /
    • 2008
  • The configuration model of a ballute type RAID(Ram Air Inflated Decelerator) for reducing the high speed and high revolution of smart submuntion is designed and tested. Three dimensional incompressible turbulent flow computational fluid dynamic analysis for the assembly of ballute and submunition is performed and pressure distribution, velocity, and drag around the assembly is calculated. Aerodynamic characteristics of the ballute assembly such as air flow inside and outside of the ballute and pressure distribution is clearly shown and it's drag coefficient is computed. Trajectory analysis of the submunition is performed and is in good agreement with the descending trajectory data of experimental model tested.

Prediction of Hot Gas Behavior in High Voltage Self-blast Circuit Breaker (초고압 복합소호 차단부의 열가스 거동 예측)

  • Kim, Jin-Bum;Yeo, Chang-Ho;Seo, Kyoung-Bo;Kweon, Ki-Yeoung;Lee, Hahk-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2494-2499
    • /
    • 2007
  • Self-blast circuit breakers utilize the energy dissipated by the arc itself to create the required conditions for arc quenching during the current zero. The high-current simulation provides information about the mixing process of the hot PTFE cloud with $SF_6$ gas which is difficult to access for measurement. But it is also hard to simulate flow phenomenon because the flow in interrupter with high current, $SF_6$-PTFE mixture vapor and complex physical behavior including radiation, calculation of electric field. Using a commercial computational fluid dynamics(CFD) package, the conservation equation for the gas and temperature, velocity and electric fields within breaker can be solved. Results show good agreement between the predicted and measured pressure rise in the thermal chamber.

  • PDF

A STUDY ON CHARACTERISTICS OF AC ELECTROOSMOTIC FLOWS AND MIXING IN A MICROCHANNEL WITH COPLANAR ELECTRODES (마이크로 채널 내 교류 전기삼투 현상을 이용한 유체 유동 및 혼합에 대한 수치해석적 연구)

  • Suh, Y.K.;Heo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.16-21
    • /
    • 2007
  • This paper presents numerical results of fluid flows and mixing in a microfluidic device with AC electroosmotic flows (AC-EOF) around coplanar electrodes attached on the top and bottom walls. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX10. Experiment was performed to confirm the generation of the drift velocity around the electrodes. It was found that near the coplanar electrodes 3-D complex flows are generated. The AC-electroosmotic flow on the electrodes plays an important role in mixing the liquid.

A Two-Dimensional Analysis of Heat Transfer and Flow in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지의 2차원 열전달 및 유동 해석)

  • Jeong, Hye-Mi;Yang, Ji-Hye;Koo, Ja-Ye;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.995-1000
    • /
    • 2001
  • Distributions of the parameters in proton exchange membrane fuel cell (PEMFC) has been analyzed numerically under steady-state and isothermal conditions. The distributions of the crucial parameters (e.g., temperature and pressure) in a PEMFC have a major impact on its safe and efficient operation. This paper predicts the performance of the model electrode plates by calculating the pressure and temperature distributions of working fluid. The calculated results of pressure and temperature at exit condition shows good agreement to experiments and gives details of flow pattern inside of electrode plates.

  • PDF

THERMAL CONDUCTION IN MAGNETIZED TURBULENT GAS

  • CHO JUNGYEON;LAZARIAN A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.557-562
    • /
    • 2004
  • We discuss diffusion of particles in turbulent flows. In hydrodynamic turbulence, it is well known that distance between two particles imbedded in a turbulent flow exhibits a random walk behavior. The corresponding diffusion coefficient is ${\~}$ ${\upsilon}_{inj}{\iota}_{turb}$, where ${\upsilon}_{inj}$ is the amplitude of the turbulent velocity and ${\iota}_{turb}$ is the scale of the turbulent motions. It Is not clear whether or not we can use a similar expression for magnetohydrodynamic turbulence. However, numerical simulations show that mixing motions perpendicular to the local magnetic field are, up to high degree, hydrodynamical. This suggests that turbulent heat transport in magnetized turbulent fluid should be similar to that in non-magnetized one, which should have a diffusion coefficient ${\upsilon}_{inj}{\iota}_{turb}$. We review numerical simulations that support this conclusion. The application of this idea to thermal conductivity in clusters of galaxies shows that this mechanism may dominate the diffusion of heat and may be efficient enough to prevent cooling flow formation when turbulence is vigorous.

Study on The Slip Factor Model for Multi-Blades Centrifugal Fan (원심다익송풍기의 미끄럼 계수에 대한 연구)

  • GUO, En-min;KIM, Kwang-Yong;SEO, Seoung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF