• 제목/요약/키워드: fluid balance

검색결과 278건 처리시간 0.033초

자성유체 자유표면의 형상 제어에 관한 연구 (A Study on the Deformation control of Free Surface of Magnetic Fluid)

  • 안창호;김대영;지병걸;이은준;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.297-300
    • /
    • 2002
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed and carried out theoretically and experimentally on the basis of Rosensweig Ferrohydrodynamic Bernoulli Equation. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body farce. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. thus, the device of a magnetic fluid proposed the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

전자기력에 의한 자성유체의 구동에 관한 연구 (A Study on the Magnetic Fluid driven by Electromagnetic Force)

  • 남성원
    • 한국전산유체공학회지
    • /
    • 제4권2호
    • /
    • pp.31-38
    • /
    • 1999
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented. The shape of free surface attained by the polar fluid approach is rougher and higher than that attained by the quasi-steady approach.

  • PDF

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek;Matej Tekavcic;Bostjan Koncar
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.624-635
    • /
    • 2024
  • In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

래크바형 수문권양기에 적용된 정유압장치의 컴퓨터 시뮬레이션에 의한 작동특성 연구 (Computer Simulation Study of the Hydrostatic Transmission Applied to the Rack-Bar Type Sluice Gate)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제6권2호
    • /
    • pp.14-21
    • /
    • 2009
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, two counter balance valves, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations.

  • PDF

정유압식 래크바형 수문권양기의 개발 (Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.15-22
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

미끄럼 스러스트베어링의 성능에 미치는 베어링 형상의 영향 해석 (Analytical Study on Effects of Bearing Geometry on Performance of Sliding Thrust Bearings)

  • 김호종;최성필;하현천
    • 한국유체기계학회 논문집
    • /
    • 제9권5호
    • /
    • pp.7-13
    • /
    • 2006
  • In the present study, we develop an analysis module to be applicable to design of sliding thrust bearings. The pressure equation is solved by using the finite element method. Average lubricant temperature is obtained from using the energy balance method. The module developed has been applied to three types of thrust bearing, such as tapered-land thrust bearings of angular and diamond types, and tilting-pad thrust bearings. Effects of the dam of the tapered-lad thrust bearings have also been investigated. It has been seen that the tapered-land thrust bearings of angular type result in the highest load capacity, while the tilting pad thrust bearings result in the lowest lubricant temperature. It has also been seen that the dam in the tapered-land thrust bearings increases both the load capacity and lubricant temperature.

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

체액량 부족(Fluid volume deficit) ; 간호진단의 타당도 조사 연구 (Validity of nursing diagnosis : Fluid volume deficit)

  • 변영순;김숙영
    • 기본간호학회지
    • /
    • 제1권2호
    • /
    • pp.207-218
    • /
    • 1994
  • A validation of the nursing diagnosis 'fluid volume deficit' was completed by using the diagnostic content validity method. Articles pertaining to fluid volume depletion were reviewed to identify the signs and symptoms used to describe the nursing diagnosis. The topics addressed in the articles included hypovolemic shock, hemorrhage, trauma, fluid balance, hydration, burn injury, thirst, dehydration. A validation instruments was constructed of 52 signs and symptoms. A validation tool was examined by expert nurses group who work on intensive care unit, kidney transplantation unit, internal medicine and general surgery unit. The study sample rated the signs and symptoms on a scale from one to five, evaluating their relevance to this diagnosis. Of the 52 signs and symptoms on the validation tool, 10 were categorized as critical indicators and 34 were categorized as defining characteristics.

  • PDF

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • 이종철;전홍필
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

고나트륨혈증과 저나트륨혈증 (Hypernatremia and hyponatremia)

  • 김동언
    • Clinical and Experimental Pediatrics
    • /
    • 제49권5호
    • /
    • pp.463-469
    • /
    • 2006
  • Sodium is the major cation of the extracellular fluid and the primary determinant of extracellular osmolality. Therefore, hypernatremia causes water movement out of cells, while hyponatremia causes water movement into cells, resulting in cellular shrinkage and cellular swelling, respectively. Serious central nervous system symptoms may complicate both conditions. Since hypernatremia and hyponatremia are accompanied by abnormalities in water balance, it is essential to understand the mechanisms regulating extracellular osmolality and volume as well as the pathophysiology of hypernatremia and hyponatremia, in order to manage both conditions with swiftness and safety.