• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.034 seconds

Air-Operated Valve Diagnostic System Development (공기구동밸브의 진단시스템 개발)

  • 양상민;송동섭;허태영;김봉호;신성기;김찬용;조택동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.430-433
    • /
    • 2003
  • Air-operated valve is one of principal valves that are using to control fluid flow. A period diagnosis for safety of power plants is necessary. But there are many difficulties such as economic loss caused by intone of high cost devices and a matter hard to deal with users. In this study we developed the diagnosis system that usersofpower plants are easy to handle. The diagnosis system is composed of database module, reliability analysis module, design safety nodule and diagnosis test and evaluation module.

  • PDF

A Study on the Rheology Characteristics of Magnetic Fluids in a Circular Pipe (원관내 자성유체의 Rheology 특성에 관한 연구)

  • Jeon, Eon-Chan;Park, Joung-Woo;Kim, Tae-Ho;Kim, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2008
  • In the present paper, we theoretically analyze the flow of magnetic fluids in a circular pipe with a vertical magnetic field and investigate the magnetic response by the external magnetic field. Theoretical study through the governing equation derived by Siliomis is carried out with numerical analysis by the Gauss Elimination Method. Using polar and magnetic effect parameters, theoretical equations and distributions for the velocity, apparent viscosity as the magnetic response are shown. Especially, in the region of strong magnetic field the specific property is appeared by finding a critical magnetic effect parameter for a polar effect parameter.

  • PDF

An Aerodynamic Noise Reduction Design at Inter-coach Space of High Speed Trains Based on Biomimetic Analogy

  • Han, Jae-Hyun;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.3
    • /
    • pp.74-79
    • /
    • 2011
  • Recent years have witnessed speed up of moving vehicles such as high-speed of trains. Increase in speed entails concomitant increase in turbulent air flow which contributes toward increased aerodynamic noise. The proposed method for aerodynamic noise reduction is based on a biomimetic design of owl feather. The five morphological parameters of the owl feather are extracted from close observation, and simulation cases are constructed by applying design of experiments methodology. Swirling strength for each case is obtained through steady-state CFD analysis, and key morphological parameters that affect the turbulence are identified. Large eddy simulations (LES) are then performed on selected cases to predict the air turbulence. Different cases show varying vortex distributions which are expected to lead to varying aerodynamic noise levels.

Structural Vibration Analysis of a Helicopter Search Light Considering Aerodynamic Buffet Load (공력 Buffet 하중을 고려한 헬리콥터 탐색등의 구조진동해석)

  • Kim, Yo-Han;Kim, Dong-Man;Kim, Dong-Hyun;Choi, Hui-Ju;Park, Yong-Suk;Kim, Jong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.870-875
    • /
    • 2009
  • In this study, computational structural vibration analysis of helicopter search light exposing unsteady buffet load have been conducted using combined advanced numerical methods. Unsteady CFD method based on Navier-Stokes equations is used to predict viscous buffet load due to flow separation effects. Full three-dimensional finite element model is constructed in order to conduct static and structural dynamic analyses of the search light model for two different typical flight speeds. Also, the correct performance of the search light can be physically estimated to examine the actual lighting area considering the effects of structural deformations.

Design of a PIV objective maximizing the image signal-to-noise ratio

  • Chetelat Olivier;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.123-137
    • /
    • 2001
  • PIV (particle image velocimetry) systems use a camera to take snapshots of particles carried by a fluid at some precise instants. Signal processing methods are then used to compute the flow velocity field. In this paper, the design of the camera objective (optics) is addressed. The optimization is done in order to maximize the signal-to-noise ratio of in-focus particles. Four different kinds of noise are considered: photon shot noise, thermal and read noise, background glow shot noise, and noise made by the other particles. A semi-empirical model for the lens aberrations of a two-doublet objective is first addressed, since further, it is shown that lens aberrations (low f-value $f_{\#}$) should be used instead of the Fraunhofer diffraction (high f-value) for the fitting of the particle image size with the pixel size. Other important conclusions of the paper include the expression of optimum values for the magnification M, for the exposure period $\tau$ and for the pixel size $\xi$.

  • PDF

The Development of a Heat Balance Evaluation Program for the Main Steam Line of LNG Carrier (LNG선 주증기계통의 열평형산전용 전산프로그램 개발)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.854-861
    • /
    • 1998
  • The demand of LNG as a cheap and clean energy which does not cause an environmental problem has sharply been increased in Korea. In general LNG is stored in a cargo tank specially designed as a liquid state below $-162^{\circ}C$. The main engine of a LNG carrier is generally a steam boiler because LNG is a highly flammable fluid with the possibility of explosion. The main engine of a cargo ship has to be capable of the propulsion load and various auxiliary loads for the safe navigation since it is the primary energy source. Therefore the evaluation of a main boiler's energy capacity is a key design point in the planning of LNG carrier's construction. This research is to develop the computational program for the analysis of steam boiler Heat balance for LNG carrier.

  • PDF

Heat Transfer Analysis in the Vacuum Carburizing Furnace (진공 침탄로 내의 전열 해석)

  • Lee, In-Sub;Ryou, Hong-Sun;Kim, Won-Bae;Yang, Je-Bok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.877-882
    • /
    • 2003
  • The main objective of the present study is to analyze the heat transfer characteristics in the vacuum carburizing furnace. Local temperatures are measured at different locations in the self-fabricated furnace for various operating conditions using K-type thermocouples. In addition, the present study simulates the fluid flows and heat transfer in the vacuum carburizing furnace using a commercial package (Fluent V. 6.0), and compares the predictions of local temperatures with experimental data. The temperature and flow fields are predicted. It is found that the time taken for reaching the steady-state temperature under the vacuum pressure is shorter than that under the normal pressure condition. It means that the carburizing furnace under vacuum pressure condition is capable of saving the required energy more efficiently than the furnace under the normal pressure condition. Furthermore, the temperature variations predicted by the numerical simulations are in good agreement with experimental data.

DESIGN OPTIMIZATION OF A STAGGERED DIMPLED CHANNEL TO ENHANCE TURBULENT HEAT TRANSFER (열전달성능 향상을 위한 엇갈린 딤플 유로의 최적설계)

  • Shin, D.Y.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.159-162
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.

  • PDF

Simulation for Improvement of Temperature Distribution Inside Refrigerator (냉장고 고내 온도산포 개선에 관한 전산모사)

  • Gao, Jia-Chen;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.98-103
    • /
    • 2019
  • With the increasing need for environmental protection, it is particularly important to improve the energy saving and reliability of refrigerators. Generally, the cold air flowing into the freezer compartment transits to the bottom of the refrigerating compartment, which can lead to uneven temperature distribution. This paper proposes two design solutions for improving the temperature distribution problem. Of these, the optimal refrigeration design was selected and tested using Computational Fluid Dynamics (CFD) modeling and simulation. The results showed improved uniformity of the temperature distribution inside the refrigerator, thus benefitting food storage while reducing energy consumption.

Effect of Tip Clearance Height on Heat Transfer Characteristics on the Plane Tip Surface of a High-Turning Turbine Rotor Blade (팁간극이 고선회각 터빈 동익 평면팁 표면에서의 열전달에 미치는 영향)

  • Moon, Hyun-Suk;Lee, Sang-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.173-177
    • /
    • 2005
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat/mass transfer coefficient is measured for four tip clearance height-to-chord ratios of h/c = 1.0%, 2.0%, 3.0%, and 4% at the Reynolds number of $2.09{\times}105$. The result shows that at lower h/c, there exists a strong flow separation/re-attachment process, which results in severe thermal load along the pressure-side comer. As h/c increases, the re-attachment is occurred further downstream of the pressure-side comer with lower thermal load. At higher h/c, a pair of vortices on the tip surface near the leading edge are found along the pressure-side and suction-side comers, and the pressure-side tip vortex have significant influence even on the mid-chord local heat transfer.

  • PDF