• Title/Summary/Keyword: fluid and flow

Search Result 7,252, Processing Time 0.043 seconds

Numerical Investigation of Mixing Characteristics in a Cavity Flow by Using Hybrid Lattice Boltzmann Method (혼성 격자볼츠만 방법을 이용한 공동 형상 내부에서의 혼합 특성에 관한 수치적 연구)

  • Shin, Myung Seob;Jeon, Seok Yun;Yoon, Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.683-693
    • /
    • 2013
  • In this study, the mixing characteristics in lid-driven cavity flows were studied numerically by using a hybrid lattice Boltzmann method (HLBM). First, we compared the numerical results from single-relaxation-time (LB-SRT) and multi-relaxation-time (LB-MRT) models to examine their reliability. In most of the cavity flow, the results from both the LB-SRT and the LB-MRT models were in good agreement with those using a Navier-Stokes solver for Re=100-5000. However, the LB-MRT model was superior to the LB-SRT model for the simulation of higher Reynolds number flows having a geometrical singularity with much lesser spatial oscillations. For this reason, the LB-MRT model was selected to study the mass transport in lid-driven cavity flows, and it was demonstrated that mass transport in the fluid was activated by a recirculation zone in the cavity, which is connected from the top to the bottom surfaces through two boundary layers. Various mixing characteristics such as the concentration profiles, mean Sherwood (Sh) numbers, and velocity were computed. Finally, the detailed transport mechanism and solutions for the concentration profile in the cavity were presented.

Study on the Temperature Separation Phenomenon in a Vortex Chamber (와류실의 온도 분리 현상에 대한 연구)

  • Ye, A Ran;Zhang, Guang;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.731-737
    • /
    • 2014
  • A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

Design Sensitivity Estimation of Injector Nozzle Hole Considering Cavitation (캐비테이션에 관한 인젝터 노즐 홀의 설계민감도 평가)

  • Yeom, Jeong Kuk;Ha, Hyeong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1361-1369
    • /
    • 2013
  • This study performs a computational fluid dynamics (CFD) analysis of the inner flow of a multihole injector nozzle by using ANSYS CFX 13.0. Based on the obtained results, a design of experiment (DOE) was performed and applied to investigate the effects of injector nozzle design parameters on cavitation. To analyze the design sensitivity and signal-to-noise ratio (S/N ratio), the hole diameter, hole length, hole angle, and K-factor of the nozzle hole were selected as design parameters, and the effect of these parameters was investigated at 16 experimental points. Consequently, it was found that the effect of the K-factor on the cavitation and inner flow of the injector nozzle is the greatest. Thus, the selection of a suitable K-factor is important in nozzle design considering cavitation flow.

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

Wind Field Change Simulation before and after the Regional Development of the Eunpyeong Area at Seoul Using a CFD_NIMR_SNU Model (CFD_NIMR_SNU 모형을 활용한 은평구 건설 전후의 바람환경 변화 모사 연구)

  • Cho, Kyoungmi;Koo, Hae-Jung;Kim, Kyu Rang;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.539-555
    • /
    • 2011
  • Newly constructed, high-rise dense building areas by urban development can cause changes in local wind fields. Wind fields were analyzed to assess the impact on the local meteorology due to the land use changes during the urban redevelopment called "Eunpyeong new town" in north-western Seoul using CFD_NIMR_SNU (Computational Fluid Dynamics, National Institute of Meteorological Research, Seoul National University) model. Initial value of wind speed and direction use analysis value of AWS (Automatic Weather Station) data during 5 years. In the case of the pre-construction with low rise built-up area, it was simulated that the spatial distribution of horizontal wind fields depends on the topography and wind direction of initial inflow. But, in the case of the post-construction with high rise built-up area, it was analyzed that the wind field was affected by high rise buildings as well as terrain. High-rise buildings can generate new circulations among buildings. In addition, small size vortexes were newly generated by terrain and high rise buildings after the construction. As high-rise buildings act as a barrier, we found that the horizontal wind flow was separated and wind speed was reduced behind the buildings. CFD_NIMR_SNU was able to analyze the impact of high-rise buildings during the urban development. With the support of high power computing, it will be more common to utilize sophisticated numerical analysis models such as CFD_NIMR_SNU in evaluating the impact of urban development on wind flow or channel.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

Study on the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파의 히스테리시스 현상에 관한 연구)

  • Lee, Ik In;Han, Geu Roo;Kim, Teo Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • Hysteresis phenomena are often encountered in a wide variety of fluid flow systems used in industrial and engineering applications. Hence, in recent years, a significant amount of research been focusing on clarifying the physics of the flow hysteresis appearing during the transient change of the pressure ratios and influencing the performance of the supersonic wind tunnel. However, investigations on the hysteresis phenomenon, particularly when it occurs inside the supersonic wind tunnel, are rare. In this study, numerical simulations were carried out to investigate the hysteresis phenomena of the shock waves encountered in a supersonic wind tunnel. The unsteady and compressible flow was analyzed with an axisymmetric model, and the N-S equations were solved by using a fully implicit finite volume scheme. The optimal pressure ratio was determined from the hysteresis curves, and the results can be utilized to operate the wind tunnel efficiently.

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

A Study on Heat Transfer of n Storage Type Direct Contact Heat Exchanger for Solar Energy Utilization (태양열 이용 축열식 직접접촉 열교환기의 열전달에 관한 연구)

  • Kang, Yong-Heack;Jeon, Myung-Seok;Yoon, Hwan-Ki;Chun, Won-Gee
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.3-14
    • /
    • 1995
  • The Direct Contact heat Exchanger(DCHX) has been widely studied in the chemical industry for many years due to its inherent simplicity as a counter-current divice for heat and mass transfer. In many solar systems, the DCHX unit can be combined with the thermal storage unit, or alternatively, it can be used separately from the storage unit, much like an external(to storage) closed heat exchanger system. In the present work, the spray column type of direct contact heat exchangers are studied extensively to harness the solar energy for hot water and spaced heating. Some of the major considerations that are involved in the design of heat exchangers in this study are that : working fluid is a hydrocaabon(such as Texaterm) or water which is either lighter or heavier than storage medium. The experimental data have revealed some interesting characteristics concerning the application of DCHXs for solar energy utilization. These experiments are carried out in the line of solar heating system, major results are as follows : 1) the flow and aspect of working fluid drop for maxium heat transfer 2) efficiency and volumetric heat transfer coefficient of D.C.H.X with a heavier working fluid are higher than those of D.C.H.X with a lighter working fluid.

  • PDF

Study of Pool Boiling Heat Transfer on Various Surfaces with Variation of Flow Velocity (다양한 표면에서 유동 속도에 따른 풀 비등 열전달에 관한 연구)

  • Kang, Dong-Gyu;Lee, Yohan;Seo, Hoon;Jung, Dongsoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.343-352
    • /
    • 2013
  • In this study, a smooth flat surface, low fin, Turbo-B, and Thermoexcel-E surfaces are used to examine the effect of the flow velocity on the pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs). HTCs and CHFs are measured on a smooth square heater of $9.53{\times}9.53mm^2$ at $60^{\circ}C$ in a pool of pure water at various fluid velocities of 0, 0.1, 0.15, and 0.2 m/s. Test results show that for all surfaces, CHFs obtained with flow are higher than those obtained without flow. CHFs of the low fin surface are higher than those of the Turbo-B and Thermoexcel-E surfaces due largely to the increase in surface area and sufficient fin spaces for the easy removal of bubbles. CHFs of the low fin surface show even 5 times higher CHFs as compared to the plain surface. On the other hand, both Turbo-B and Thermoexcel-E surfaces do not show satisfactory results because their pore sizes are too small and water bubbles easily cover them. At low heat fluxes of less than $50kW/m^2$, HTCs increase as the flow velocity increases for all surfaces. In conclusion, a low fin geometry is good for application to steam generators in nuclear power plants.