• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.035 seconds

Numerical and laboratory investigations of electrical resistance tomography for environmental monitoring

  • Heinson Tania Dhu Graham
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Numerical and laboratory studies have been conducted to test the ability of Electrical Resistance Tomography-a technique used to map the electrical resistivity of the subsurface-to delineate contaminant plumes. Two-dimensional numerical models were created to investigate survey design and resolution. Optimal survey design consisted of both downhole and surface electrode sites. Resolution models revealed that while the bulk fluid flow could be outlined, small-scale fingering effects could not be delineated. Laboratory experiments were conducted in a narrow glass tank to validate theoretical models. A visual comparison of fluid flow with ERT images also showed that, while the bulk fluid flow could be seen in most instances, fine-scale effects were indeterminate.

Flow characteristics of supersonic twin-fluid atomizers (초음속 2유체 분무노즐의 유동 특성)

  • Park, Byeong-Gyu;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2267-2276
    • /
    • 1996
  • Twin-fluid atomization has been widely used in combustors and process industries because of its high performance and simple structure. Flow visualization and pressure measurements were conducted to investigate the effects of gas flow in twin-fluid atomization. Schlieren photographs showed that changes in atomizing gas pressure, altered the wave patterns, and the lengths of both recitrculating toroid (impinging stangnation point) nad supersonic flow region in the jet. A longer supersonic wave pattern like net-shape wqas observed as atomizing gas pressure increased. The disintegration phenomenon of liquid delivery tube. The variation of spray angles with gas pressures were obtained by visualization using laser sheet beam. Suction pressuresat the nozzle orifice exit and recirculating region are shown to be used to estimate the stable atomization condition of a twin-fluid atomizer.

Internal Flow and Limiting Streamlines Observations of Contra-Rotating Axial Flow Pump at Partial Flow Rate

  • Watanabe, Satoshi;Momosaki, Shimpei;Usami, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.235-242
    • /
    • 2011
  • An application of contra-rotating rotors, in which a rear rotor is in tandem with a front one and these rotors rotate in the opposite direction each other, has been proposed against a demand for developing higher specific speed axial flow pump. One prototype rotors, which we have designed with a conventional method, has given the positive slope of head characteristic curve especially in the rear rotor. It is necessary to understand the internal flow behavior in the rear rotor to establish the design guideline for achieving higher and more reliable performance. In the present study, we carried out the experimental investigations of the internal flow field of the rear rotor, especially at the partial flow rate, by Laser Doppler Velocimetry (LDV) for the main flow and the limiting streamlines observation on rotor surfaces for the boundary layer flows.

A Numerical Study on the Flowfield of a Cyclone Separator for Oil Droplets (오일입자 원심분리기 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.36-41
    • /
    • 2015
  • The cyclone separator is a simple device, which causes the centrifugal separation of materials such as droplets or particles in a fluid stream. The cyclone separator utilizes the energy obtained from fluid pressure and linear motion to create rotational fluid motion. This rotational motion leads the materials suspended in the fluid to separate from the fluid quickly due to the centrifugal force. The rotation is produced by the tangential or involuted introduction of fluid into the vessel. These materials may be droplets of fuel in blow-by gas through an engine. Droplets suspended in the feed liquid may separate according to size, shape, or density. And the change of part dimension in a cyclone separator can yield the its performance variation. The current study shows the influence of design parameters on the performance of a cyclone separator for blow-by gas.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

A Study for Regulating Flow Fluctuation and Preventing Backflow of Peristaltic Pump (연동펌프의 유량맥동 조절과 역류현상을 방지하는 장치에 대한 연구)

  • Jeong, Yoo-seok;Lee, Cheol-Soo;Lee, Tae-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.28-34
    • /
    • 2016
  • Though a peristaltic pump is a crucial element in miniaturized drug delivery systems, it has some intrinsic disadvantages such as backflow and flow fluctuation. To overcome these limitation, we have developed valve-less peristaltic pump system including orifice and stagnation chamber. we measured flow rate to investigate the performance of rotary peristaltic pump with three rollers and an elastomeric tube pumping a viscous fluid. The flow fluctuations and the backflow happen as a result from the disengagement of the contact interaction between the rollers and the tubes. Stagnation chamber installed in front of orifice plate was composed of rubber tube and gas chamber. By changing orifice hole diameter with stagnation chamber flow rate and pressure in the tube was regulated. The obtained maximum reduction ratio of flow fluctuation is 96.79%.

Analysis of Flow Characteristics of Multilayer Type Piezo Valve (적층형 압전밸브의 유동특성 해석)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.946-949
    • /
    • 2003
  • This paper reports on the fluid flow simulation results of a multilayer type piezoelectric valve. The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed type using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a MLCA(Multilayer Type Ceramic Actuator). It is confirmed that the complete laminar flow and the lowest flow leakage are strongly depend on the valve seat geometry. In addition, turbulent flow was occurs in valve outlet according to increase seat dimension, height and inlet pressure. From this, we was deducts the optimum geometry of the valve seat and diaphragm deflection that have an great influence fluid flow in valve. Thus, it is expected that our simulation results would be apply for piezoelectric applications such as valve and pump, fluidic control systems.

  • PDF

FINITE SPEED OF PROPAGATION IN DEGENERATE EINSTEIN BROWNIAN MOTION MODEL

  • HEVAGE, ISANKA GARLI;IBRAGIMOV, AKIF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.108-120
    • /
    • 2022
  • We considered qualitative behaviour of the generalization of Einstein's model of Brownian motion when the key parameter of the time interval of free jump degenerates. Fluids will be characterised by number of particles per unit volume (density of fluid) at point of observation. Degeneration of the phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dense gas and b) flow of fluid far away from the source of flow, when the velocity of the flow is incomparably smaller than the gradient of the density. First, we will show that both types of flows can be modeled using the Einstein paradigm. We will investigate the question: What features will particle flow exhibit if the time interval of the free jump is inverse proportional to the density and its gradient ? We will show that in this scenario, the flow exhibits localization property, namely: if at some moment of time t0 in the region, the gradient of the density or density itself is equal to zero, then for some T during time interval [t0, t0 + T] there is no flow in the region. This directly links to Barenblatt's finite speed of propagation property for the degenerate equation. The method of the proof is very different from Barenblatt's method and based on the application of Ladyzhenskaya - De Giorgi iterative scheme and Vespri - Tedeev technique. From PDE point of view it assumed that solution exists in appropriate Sobolev type of space.

Hall Effect on Unsteady Couette Flow. with Heat Transfer Under Exponential Decaying Pressure Gradient

  • Attia HazemAIi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2053-2060
    • /
    • 2005
  • The unsteady Couette flow of an electrically conducting, V1SCOUS, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer taking the Hall effect into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.