• Title/Summary/Keyword: fluid and flow

Search Result 7,251, Processing Time 0.039 seconds

Fluid Flow Characteristics for Minimizing the Area of Rapid Flow Inside the Water Tank to which the Multiple Hoe Screw Nozzle Incurrent Canal is Applied, by Using the Computational Fluid Dynamics (CFD) Simulation (전산유체해석(CFD) 모의를 이용한 다공형 스크류 노즐 입수관이 적용된 물탱크 내부의 사류구역 최소화에 대한 유동특성)

  • Song, Jun-Hyuck;Kwon, Jong-Woo;Choi, Jong-Woong;Wang, Chang-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.23-33
    • /
    • 2015
  • This study was carried out for the purpose of minimizing the area of rapid flow inside the water tank. And the shape of incurrent canal was improved, and then the characteristics of fluid flow occurring inside the water tank was analyzed by using the Computational Fluid Dynamics (CFD) simulation method. better multiple hoe screw nozzle incurrent canal was used instead of conventional drop current canal used for the water tank. And according to the results of analyzing the characteristics of fluid flow, in case a screw blade was installed inside the nozzle, fluid flow was sprayed wide. And wide fluid flow was shown inside the cylindrical water tank too. Besides, a tracer simulation was carried out, in case of installing 1 and 2 multiple hoe screw nozzle incurrent canals at the cubic water tank. As a result, MODAL, MODAL index value was close to 1, in case of installing 2 canals. Therefore, it was possible to obtain the results of being close to the characteristics of plug flow.

Fluid Flow and Heat Transfer in a Super high-Pressure Mercury Lamp using CFD

  • Jang, Dong Sig;Lee, Yeon Won;Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon Hwan
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.5-9
    • /
    • 2012
  • The discharge properties of super high-pressure mercury lamp are due to resistance heating for energy input, and results in temperature increase. The cooling equilibrium state is reached by the heat conduction, convection and radiation. In order to predict the fluid flow and heat transfer in and around the mercury lamp accurately, its visualization is of utmost importance. Such visualization is carried out by CFD program in this study. We focus on Anode shape to calculate four cases, namely AA, AB, AC and AD separately, and compare the temperature distribution and velocity vector in each case to predict cooling capacity and fluid flow properties. It can be concluded that the shape of anode plays an important role that affects the fluid flow and heat transfer in a mercury lamp.

Influence of Two Moving Masses on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid Flow (두 이동질량이 단순지지 유체유동 파이프의 동특성에 미치는 영향)

  • 윤한익;임순홍;유진석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.605-611
    • /
    • 2003
  • A simply supported pipe conveying fluid and two moving masses upon it constitute this nitration system. The equation of motion is derived by using Lagrange's equation. The influence of the velocities of two moving masses, the distance between two moving masses, and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid flow are considered with in its critical values of a simply supported pipe without moving masses upon It. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. As the velocity of two moving masses increases, the deflection of a simply supported pipe is increased and the frequency of transverse vibration of a simply supported pipe is not varied. In case of small distance between two masses, the maximum deflection of the pipe occur when the front mass arrive at midspan. Otherwise as the distance get larger, the position of the front masses where midspan deflection is maximum moves beyond the midpoint of a simply supported pipe. The deflection of a simply supported pipe is increased by coupling of the velocities of moving masses and fluid flow.

Rediction of Stage Efficiency Variation of a USC High Pressure Steam Turbine by Computational Fluid Dynamics (유동해석을 이용한 고압증기터빈 단효율 변화 예측)

  • Kang, Soo Young;Jang, Hyuck Jun;Lee, Jeong Jin;Kim, Tong Seop;Park, Seong Jin;Hong, Gi Won
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.17-25
    • /
    • 2017
  • Prediction of performance and operating characteristics of a state-of-the-art ultra-supercritical (USC) steam turbine is an important issue in many ways. Theoretical and empirical correlation equations, developed a few decades ago, have been widely used in commercial programs for a prediction of performance. To improve of these correlation equations and apply them to the high pressure turbine of a USC steam turbine, computational fluid dynamic analysis was carried out and correlation equations to calculate efficiency variation of each stage were made. Both fluid dynamic characteristic and thermodynamic performance was analyzed for the development of the correlation equations. In particular, the impact of flow addition through an overload valve (OLV) between stages was examined throughly. The trend of pressure drop due to the flow mixing by the OLV flow addition was analyzed and an efficiency correlation equation considering the OLV flow was also made.

Analysis of the micro diffuser/nozzle pump performance of steady states using similitude model and simulations (상사 모델과 전산 수치 해석을 이용한 diffuser/nozzle pump 의 정상 상태에 대한 연구)

  • Park, Sung-Hoon;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2763-2768
    • /
    • 2007
  • Recently, as the semiconductor production technology develops, there has been growing interest in the cooling system using micro fluid pump. Among the various types of micro fluid pump, the valve-less diffuser/nozzle has been extensively studied in recent years. However, the flat-walled diffuser/nozzle flow has not been clearly looked into due to its non-linear characteristics. In this paper, the flow characteristics of the flat-walled diffuser/nozzle have been analyzed using similitude model and simulations. Similitude models are designed so that the flow pattern is same as that of 1/10 scale flow by using high viscous fluid as working fluid. The results are compared to the simulations. It is shown that the flow characteristics of 2D simulation are different from 3D simulations at high Re region, and the measured pump efficiency is highly dependent on the pressure difference as well as the channel geometry. From these results, the desirable conditions for the efficient pump is discussed.

  • PDF

A Study on the Development of Measurement System for Fluid Volume and Flow Rate (유체의 유량 및 유속 측정 시스템 개발에 관한 연구)

  • Lee, Seok-Won;Lee, Tea-Jin;Nam, Yun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2492-2494
    • /
    • 2003
  • Urine analysis is one of the most important medical examination in the hospital. Not only the data for the ingredients of urine through chemical analysis, but also the data related to fluid dynamics, e.g., peak flow rate, average flow rate, may provide some useful information about patient's state of health. Therefore, we develop the portable system to measure and analyse fluid volume/flow rate in this study. This system can store and print the measured data during the pre-specified time interval, and provide some meaningful data related with fluid dynamics. We explain the method and the technical stuff to implement the system, and show the result.

  • PDF

Development of Compressible Three Phases Flow Simulator Based on Fractional Flow Approach (압축성을 고려한 분율 흐름 접근 방식에 근거한 삼상흐름모델 개발)

  • Suk, Hee-Jun;Ko, Kyung-Seok;Yeh, Gour-Tsyh
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.731-746
    • /
    • 2008
  • Most multiphase flow simulators following fractional flow approach assume incompressibility of fluid and matrix or consider only two phase flow (water and air, water and NAPL). However, in this study, mathematical governing equations were developed for fully compressible three-phase flow using fractional flow based approach. Also, fully compressible multiphase flow simulator (CMPS) considering compressibilities of matrix and fluid was developed using the mathematical governing equations. In order to verify CMPS, the CMPS were compared with analytical solution and the existing multiphase flow simulator, MPS, which had been developed for simulating incompressible multiphase flow (Suk and Yeh 2007; Suk and Yeh 2008). According to the results, solutions of CMPS and MPS and analytical solutions are well matched each other. Thus, it is found that CMPS has the capability of simulating compressible three phase flow phenomena assuming compressibilities of fluids and matrix.

A study on the synthesis of fine nickel hydroxide crystalline powder using the taylor fluid flow

  • Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.268-273
    • /
    • 2017
  • In this study, nickel hydroxide crystalline powders were synthesized by continuous reaction in the taylor fluid flow using nickel chloride, nickel sulphate and sodium hydroxide as raw materials and compared with those prepared by a conventional batch type reaction. The crystallinity of nickel hydroxide prepared by the Taylor fluid flow reaction was higher than that of nickel hydroxide obtained by batch reaction. The particle size of nickel hydroxide decreased about 2.5 to 3.6 times, and the specific surface area was increased.

Flow Analysis for the Sludge Pneumatic Dehydrator with Cyclone Type (사이클론형 슬러지 공기건조기의 유동해석)

  • Kim, Bong-Hwan;Jung, Dae-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • Air drying technology was developed as an equipment for reducing of moisture content from wastewater treatment and waterworks sludge cake and reproducing it by reusable matter. Advantage of cyclone type pneumatic dehydrator is simple and excellent drying performance. The air drying equipment was composed to the air ejector which made high-speed fluid field, and cyclone which made circling fluid field. Dewatered cake was crushed at the high-speed zone as first step, and formed with dried powder of sphere shape by the collision between particles at the circling fluid zone. In this study, a CFD analysis has been performed to predict air-sludge particles flow in cyclone and ejector of pneumatic dehydrator. The computational results showed typical Rankine vortex structure which was frequently found in swirling flow phenomena. And the conical type wedge in lower part of a cyclone prevented accumulation of the sludge particles in the cyclone. Therefore, this technology was effective in drying of dehydrated cake of waterworks sludge.

  • PDF

Heat and Fluid Flow Characteristics in Subway Station Platform with Consideration of Pressure Drop between Screen Doors and Stair Passages (스크린 도어와 계단 통로 사이 압력 강하량에 따른 지하철 승강장 내부 열유동 특성)

  • Yoon, Jung-Bae;Kim, Seok-Wan
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.21-28
    • /
    • 2006
  • In the present study, the analysis on heat and fluid flow in subway station platform is carried out by considering the pressure drop between screen doors and stair passages. To investigate the effect on the characteristics of heat and fluid flow of pressure drop, Numerical simulation is applied. The present results show a better cooling condition, in the case of without pressure drop.

  • PDF