• Title/Summary/Keyword: flow through the cylinder

Search Result 263, Processing Time 0.032 seconds

Coupled CFD-FE Analysis Method for IC Engine Cooling Water Jacket under Subcooled Nucleate Boiling Conditions (핵비등 열전달 효과를 고려한 내연기관 냉각수로의 CFD-FE 연성해석 기법)

  • Lee, Myung-Hoon;Kim, Dong-Kwang;Lee, Sang-Kyoo;Rhim, Dong-Ryul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.9-16
    • /
    • 2006
  • The present study is to simulate coolant flow in IC engine cooling passages under subcooled nucleate boiling conditions and investigate thermal stress analysis of the solid part. To consider nucleate boiling heat transfer effect, Chen's empirical formula is used through user subroutine programing in CFD code and then nucleate boiling model is compared with Robinson's experimental results, which shows reasonable agreement. This Chen's nucleate boiling model is applied to single cylinder IC engine model and we do cylinder liner thermal stress analysis using commercial FEM code.

A Study on the Heat Transfer of In-line Heat Exchanger (직렬 열교환기의 열전달에 관한 연구)

  • Choe, S.Y.;Kim, M.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.48-53
    • /
    • 2008
  • Heat exchangers are commonly used in practice in a wide range of application, from heating and air-conditioning system in a household, to chemical processing and power production in a large plant. Heat transfer in a heat exchanger usually involves convection in each fluid and conduction through the wall separating the two fluids. The heat transfer characteristics of tube banks of in-line arrangements of four circular cylinders in a cross flow are compared for a range of tube locations and Reynolds numbers. The in-line pitch ratio was set up in the range of $1.5\leq L/d\leq4.0$, where L is the center to center distance and d the circular cylinder diameter, and in the Reynolds number of $13,000\leq Re\leq50,000$. The local and mean Nusselt numbers were estimated, and then. Subsequently, the heat transfer characteristics of four circular cylinders were found to exhibit a strong dependency upon the cylinder spacing and separation point of their upstream cylinders.

  • PDF

Design of Solenoid Actuator for FCV Cylinder Valve Considering Structural Safety (구조 안전성을 고려한 수소 연료 전지차 용기 밸브의 솔레노이드 액추에이터 설계)

  • Lee, Hyo Ryeol;Ahn, Jung Hwan;Shin, Jin Oh;Kim, Hwa Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Green vehicles include electric vehicles, natural gas vehicles, fuel cell vehicles (FCV), and vehicles running on fuel such as a biodiesel or an ethanol blend. An FCV is equipped with a cylinder valve installed in an ultra-high pressure vessel to control the hydrogen flow. For this purpose, an optimum design of the solenoid actuator is necessary to ensure reliability when driving an FCV. In this study, an electromagnetic field analysis for ensuring reliable operation of the solenoid actuator was conducted by using Maxwell V15. The electromagnetic field analysis was performed by magnetostatic technique, according to the distance between magnetic poles in order to predict the attraction force. Finally, the attraction force was validated through comparison between the Maxwell results and measurement results. From the results, the error of attraction force ranged from 4.53 % to 9.05 % at testing conditions.

Oil Leak Analysis using Simulation Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 누유량 분석)

  • Dae Kyung Noh;Dong Won Lee;Jae Yong Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.35-44
    • /
    • 2023
  • This study aimed to analyze the performance of hydraulic systems for dental chair when long working hours makes the temperature of hydraulic fluid rise. The study was carried out in the following manner. First, 'cylinder's clearance' was reflected in the three kinds of hydraulic circuits, which were developed through the preceding study, in order to analyze oil leak. Second, 12 cases of simulations comprised of the up and down of cylinders were carried out. Third, it was determined whether the cylinder velocity of dental chair surpasses 1cm/s required in the development even in the hydraulic fluid temperature of 60℃. In conclusion, this study used SimulationX to verify the performance stability at high temperatures using three types of hydraulic circuits designed to develop a Korean unit chair.

A/F Control of an MPI Engine on Transient Conditions with an Intergration type Ultrasonic Flow Meter (적분형 초음파 유량계를 이용한 MPI 엔진의 비정상상태 공연비 제어)

  • 김중일;장준석;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.36-47
    • /
    • 1999
  • Three-way catalyst converter, cleaning up the exhaust gas contamination of SI engine, has the best efficiency when A/F ratio is near the stoichiometry . The feedback control using oxygen sensors in the exhaust manifold has limits caused by the system delays. So the accurate measurement of air flow rate to an engine is essential to control the fuel injection rate especially on transient condition like the rapid throttle opening and closing. To measure the rapid change of flow rates. the air flow meter for the engine requires quick response, flow reversal detection, and linearity . Tjhe proposed integration type air flow meter (IFM), composed of an ultrasonic flow meter with an integration circuit, has significantly improved the measurement accuracy of air mass inducted through the throttle body. The proposed control method estimated the air mass at the cylinder port using the measured air mass at the throttle . For the fuel dynamic model, the two constant fuel model is introduced . The control parameters from air and fuel dynamics are tuned to minimize the excursion of the air fuel ratio. As a result A/F ratio excursion can be reduced within 5% when throttle rapidly opens and closes at the various engine conditions.

  • PDF

An experimental study on the flow characteristics of intake and exhaust in turbocharged diesel engine (배기 과급 디젤기관의 흡배기 유동특성에 관한 실험적 연구)

  • 배원섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.48-56
    • /
    • 1991
  • This paper describes the experimental investigations on the pressure variations of intake and exhaust manifold and mass flow rate through exhaust turbine of turbocharged 6-cylinder diesel engine. The turbocharger of experimental diesel engine is constructed with the radial ty pe exhaust turbine and blower driven by exhaust gases. The pressure variations were measur ed by pressure transducer at the points such as turbine inlet and outlet, compressor inlet and outlet, and inlet pipe and exhaust manifolds for normal and combined charging engines with the change of engine speed. The experimental results of this study show that the mass flow rate of exhaust turbine and the variations of pressure in intake and exhaust manifold are all increased with the increase of engine speed.

  • PDF

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Smulation (I) - Numerical Test - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (I) - 수치 실험 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.973-983
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes is evaluated for large eddy simulation of turbulent flow. Two turbulent flows are considered: turbulent channel flow at Re = 23000 and flow over a circular cylinder at Re = 3900. The effects of numerical dissipation on the finite differencing and aliasing errors and the subgrid-scale stress are investigated. It is shown through the simulations that compact upwind schemes are not suitable for LES, whereas the fourth order-compact centered scheme is a good candidate for LES provided that proper dealiasing of nonlinear terms is performed. The classical issue on the aliasing error and the treatment of nonlinear terms is revisited with compact difference schemes.

A Study on Effects of Oil Aeration Level on Engine Lubrication System by using Computer Program (컴퓨터 프로그램을 이용한 엔진오일 내 공기함량 변화가 엔진윤활시스템에 미치는 영향 연구)

  • 전상명;박영환;장시열
    • Tribology and Lubricants
    • /
    • v.17 no.3
    • /
    • pp.198-208
    • /
    • 2001
  • A Parametric study based on a computer analysis of the lubrication system of a four-cylinder gasoline engine is illustrated. Through the parametric study, the effects of various aeration levels on the change of oil flow rate and pressure are investigated. Also, at high oil temperature and low engine speed, the effect of oil aeration level on oil flow characteristics in lubrication system is investigated. The illustrated results may give to designers the guide lines of oil aeration level for the safe design of engine lubrication systems in terms of minimum pressure at crank oil bore.

A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port (흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

Analysis of Tumble Decay Mechanism through LDV Measurement in an Engine (LDV측정을 통한 엔진내 텀블감쇄 메카니즘 해석)

  • 강건용;이진욱;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2773-2778
    • /
    • 1994
  • Tumbling motion is very effective for turbulence enhancement during compression process in the cylinder of 4-valve engines. In this paper the tumble decay mechanism for different intake port configuration were measured using laser Doppler velocimetry. Analysis of the tumble decay mechanism was achieved by means of two non-dimensional parameters, defined as tumble eccentricity and shape factor in tumble velocity profile, in addition to the tumble moment.