• Title/Summary/Keyword: flow simulator

Search Result 379, Processing Time 0.026 seconds

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

A Study on the model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Ji, Young-Moo;Park, Jung-Sang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.358-361
    • /
    • 2008
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For numerical analysis, the Boussinesq fluid approximation and line fire model, which is assumed by the shape of forest fire spreading, are adopted. Comparing 3-D full numerical solutions with 2-D similarity solution, it has been built a new model that is capable of temperature prediction along the symmetric vertical axis in both cases of laminar and turbulent flows.

  • PDF

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

Implementation of a blood flow simulator and a blood flowmeter probe using self-mixing effect of the laser diode (혈류 시뮬레이터와 LD의 자기혼합효과를 이용한 혈류계 프로브의 구현)

  • Kim, Jong-Weon;Ko, Han-Woo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.76-77
    • /
    • 1998
  • In this paper, the authors have implemented a blood flow simulator and a blood flowmeter probe using self-mixing effect of the laser diode. The purpose of the blood simulator is to simulate microvascular blood flow in tissue. It consists of melinex film (thickness = $125{\mu}m$) which has similar optical characteristics to epidermis and porous polyethylene filter (Vyon, porosity 35%, mean pore size $50{\mu}m$, thickness=1 mm) which has similar optical characteristics to dermis. The blood flowmeter probe consists of laser diode(5 mW, 780 nm wavelength), CD lens(focal lenght 12 mm), current-to-voltage converter, highpass filter, and preamplifier. It doesn't need optical fiber, therefore, implementation of the probe is simpler than conventional probe using optical fiber.

  • PDF

COMPUTER AIDED SCHECULING MODEL OF MATERIALS HANDSLING IN CHEMICAL ANALYSIS FLOOR

  • Fujino, Yoshikazu;Motomatu, Hiroyoshi;Kurono, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.31-34
    • /
    • 1995
  • The automated chemical analysis shop floor are developed for the environmental pollution problems in our chemical analysis center. This shop floor have the several equipments include weight, pour, dry, heater, boiler, mixture, spectroscopy etc. And the material handling components are made up by the stored stack, conveyore, turntables, robot etc. Computer simulation has been an important tool for these complete design problem. We have designed the arangement of chemical equipments and material flow systems by using the simulator "AutoModII". "AutoMoII" is one of the advanced simulator, CAD-like drawing tools with a powerful, engineering oriented language to model control logic and material flow. The result is the modeling of the chemical analysis system in accurate, three dimensional detail. We could designed the set able layout and scheduling system by using the AutoMoII simulator. AutoMoII simulator.

  • PDF

A Study on the Power System Restoration Simulator (전력계통 고장복구 교육 시스템에 관한 연구)

  • Lee H.J.;Park S.M.;Lee K.S.;Lee J.G.;Min S.W.;Han C.K.;Park J.K.;Moon Y.H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.323-327
    • /
    • 2005
  • This paper presents an operator training simulator for power system restoration against massive black-out. The system is designed especially focused on the generality and convenient setting up for initial condition of simulation. The former is accomplished by using power flow calculation methodology, and PSS/E data is used to define the initial situation. The proposed simulator consists of three major components - the power flow(PF) module, data conversion(COW) module and GU subsystem. PF module calculates power flow, and then checks overvoltage of buses and overflow of lines. COW module composes an Y-Bus array and a data base at each restoration action. The initial Y-Bus array is constructed from PSS/E data. The user friendly GUI subsystem is developed including graphic editor and built-in operation manual. As a result, the maximum processing time for one step operation is 15 seconds, which is adequate for training purpose. Comparison with PSS/E simulation proves the accuracy and reliability of the training system.

Development of the Power Restoration Training Simulator for Jeju Network

  • Lee, Heung-Jae;Park, Seong-Min;Lee, Kyeong-Seob;Song, In-Jun;Lee, Nam-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.18-23
    • /
    • 2006
  • This paper presents an operator training simulator for power system restoration against massive blackout. The system is designed especially focused on the generality and convenient setting up for initial condition of simulation. The former is accomplished by using power flow calculation methodology, and PSS/E data is used to set up the initial state for easy setting. The proposed simulator consists of three major components-a power flow(PF), a data conversion(CONV), and, a GUI module. The PF module calculates power flow, and then checks over-voltages of buses and overloads of lines. The CONV module composes a Y-Bus array and a database at each restoration action. The initial Y-Bus array is composed from PSS/E data. A user friendly GUI module is developed including a graphic editor and a built-in operation manual. The maximum processing time for one step operation is 15 seconds, which is adequate for training purpose.

Effects of a New Clinical Training Simulator for Dental Radiography using Augmented Reality on Self-efficacy, Interest in Learning, Flow, and Practice Satisfaction (증강현실형 치과방사선촬영 시뮬레이터의 개발 및 효과검증 : 자아효능감, 학습흥미도, 학습몰입도, 실습만족도를 중심으로)

  • Gu, Ja-Young;Lee, Jae-Gi
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1811-1817
    • /
    • 2018
  • The purpose of this study is to elucidate the effects of a new clinical training simulator for dental radiography using augmented reality (AR) on user learning context. To accomplish this purpose, we divided 217 dental hygiene students into two groups. The experimental group was presented with the new clinical training simulator for dental radiography using AR, and the control group was presented with task information using a textbook. The results showed that the experimental group presented the new clinical training simulator for dental radiography using AR had a higher level of self-efficacy, interest in learning, flow, and practice satisfaction compared with the control group shown the task information using a textbook. Therefore, the AR-based radiography simulator can be utilized in dental radiology practice education as an effective educational device.

An Overall Investigation of Break Simulators for LOCA Scenarios in Integral Effect Tests

  • Kim, Yeon-Sik;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.73-88
    • /
    • 2014
  • Various studies on the critical flow models for sub-cooled and/or saturated water were reviewed, especially on Fauske, Moody, and Henry for basic theoretical models; Zaloudek for insight into physical phenomena for a critical flow in an orifice type flow path; Sozzi & Sutherland for a critical flow test of saturated and sub-cooled water at high pressure for orifice and nozzles; and a Marviken test on a full-scale critical flow test. In addition, critical flow tests of sub-cooled water for the break simulators in integral effect test (IET) facilities were also investigated, and a hybrid concept using Moody's and Fauske's models was considered by the authors. In the comparison of the models for the selected test data, discussions of the effect of the diameters, predictions of the critical flow models, and design aspects of break simulator for SBLOCA scenarios in the IET facilities were presented. In the effect of diameter on the critical flow rate with respect to all dimensional scales, it was concluded that the effect of diameter was found irrespective of diameter sizes. In addition, the diameter effect on slip ratio affecting the critical flow rate was suggested. From a comparison of the critical flow models and selected test data, the Henry-Fauske model of the MARS-KS code was found to be the best model predicting the critical flow rate for the selected test data under study.

A Study on the Prediction of Pressure ~ Time Histories by Unsteady Gas Flow through the Internal Combustion Engine Exhaust System (내연기관 배기계의 비정상 가스유동에 대한 압력-시간 파형 예측에 관한 연구)

  • M.H.Lee;J.S.Lee;B.G.Yu;K.O.Cha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.491-502
    • /
    • 1997
  • This paper describes a theoretical and exprimental investigation of the pressure - time histories of some basic internal combustion engine exhaust systems. The program package is utilized the method of characteristics to solve the general equations of one - dimensional unsteady gas flow. This analysis is then combined with boundary models, based on quasi - steady flow approach, to give a complete treatment of the flow behavior in the exhaust system. Using a rotary valve exhaust simulator, experimental pressure - time histories were obtained. The predictions are com¬pared with measured results and show a high degree of correlation in amplitude and phasing.

  • PDF