• Title/Summary/Keyword: flow simulator

Search Result 379, Processing Time 0.028 seconds

Development of pulse diagnosis possible simulator using the stepper motor pumps (스텝 모터 펌프를 이용한 맥진 가능한 시뮬레이터의 개발)

  • Ryu, Geun-Taek;Woo, Sung-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.915-918
    • /
    • 2016
  • Virtual testing devices are required due to rapid changes in the health care industry and the increase of the medical or nursing workforce. The importance of devices such as the simulator, blood vessels, and lab equipment for modeling blood flow to the heart is increasing too. In this study, we made heart pump by using a step motor and developed device which simulates arterial, venous blood pressure, and blood flow. We finally evaluated the function of proposed device. The proposed system is composed of the pump for simulating, the valve device to describe the resistance of the artery and vein, and a reducing device showing the characteristics of the venous system. We used BOXER pump for heart simulator and silicon tube for arterial and venous vessels, and designed a reducing device. We also used the pressure sensor to measure arterial blood pressure. For the evaluation of the proposed system, we selected a range of 50~100mmHg of the blood circuit 60 per minute and then compared the blood pressure of a person and the measured blood pressure.

  • PDF

A Seamless Flow Mobility Management Architecture for Vehicular Communication Networks

  • Meneguette, Rodolfo Ipolito;Bittencourt, Luiz Fernando;Madeira, Edmundo Roberto Mauro
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.207-216
    • /
    • 2013
  • Vehicular ad-hoc networks (VANETs) are self-organizing, self-healing networks which provide wireless communication among vehicular and roadside devices. Applications in such networks can take advantage of the use of simultaneous connections, thereby maximizing the throughput and lowering latency. In order to take advantage of all radio interfaces of the vehicle and to provide good quality of service for vehicular applications, we developed a seamless flow mobility management architecture based on vehicular network application classes with network-based mobility management. Our goal is to minimize the time of flow connection exchange in order to comply with the minimum requirements of vehicular application classes, as well as to maximize their throughput. Network simulator (NS-3) simulations were performed to analyse the behaviour of our architecture by comparing it with other three scenarios. As a result of this work, we observed that the proposed architecture presented a low handover time, with lower packet loss and lower delay.

Development of a Fan Simulator Using Supercomputer (슈퍼컴퓨터를 활용한 팬 시뮬레이터 개발)

  • Kim, Myung-Il;Kim, Seung-Hae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.805-813
    • /
    • 2012
  • A fan is the most common air flow machinery and is being used in various different industries such as for heavy machinery, home appliances and automobile. An axial fan has blades that force air to move parallel to the shaft about which the blades rotate. This type of fan is used in a wide variety of applications, ranging from small cooling fans for electronics to the giant fans used in wind tunnels. An axial fan generating large air volume used to cool equipments, but is less efficient. A sirocco fan is a efficient device for moving air by centrifugal force and can generate high pressure. Fans that affect the performance and noise of a product are important components. It is also a time and budget consuming equipment to develop a fan through physical experiments. In order to overcome this problem, we have designed and developed a fan simulator for axial and sirocco fan's fluid analysis using supercomputer. Performance and noise prediction based on datamining without numerical analyses is also developed for the conceptual design of a fan.

The Design of UPFC simulator by using EMTDC (EMTDC를 이용한 시뮬레이터급 통합전력제어기의 설계)

  • Jeon, Jin-Hong;Song, Eui-Ho;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.374-376
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency[1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design and control algorithm of UPFC simulator for KERI simulator. As a control algorithm is implemented by digital controller, we consider sample-and-hold of signals In this simulation, we use EMTDC/PSCAD V3.0 software which can simulate instantaneous voltage and current.

  • PDF

Simulator Development and Analysis for Signal Flow Pathway in Vertebrate Retina (척추동물 망막의 신호 전달 경로 시뮬레이터 개발 및 분석)

  • Baek, Seungbum;Jang, Young-Jo;Cho, Kyoungrok
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.11
    • /
    • pp.655-664
    • /
    • 2018
  • Retina transforms the external light into electrical signal that stimulates visual cortex of the brain. Electrical modeling of the retina is useful to understand its structure and action that is a prerequisite to implement the retina as a hardware device. This paper introduces a 2-D electrical network model of vertebrate's retina considering signal pathway of retinal cells and synapses. We implemented a simulator of the retina based on the electrical network model to analyze its operation under various circumstances. Compared to the prior studies, It might contribute designing of artificial retina device in terms of that this study specifically observed input and output reactions of each cell and synapse node under various light intensity on the retina.

Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart

  • Okada, Jun-ichi;Washio, Takumi;Sugiura, Seiryo;Hisada, Toshiaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.295-303
    • /
    • 2019
  • A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted drug-induced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.

The Effects of Horse-riding Simulator Training with Dual-task on Pulmonary Function and Flexibility in Healthy Adults

  • Seo, Jeong Pyo;Hwang, Yoon Tae;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.383-387
    • /
    • 2020
  • Purpose: The purpose of the present study was to investigate the effects of a simultaneous dual-task and horse-riding simulator (HRS) training regime on pulmonary function and flexibility. Methods: Sixteen subjects were recruited and randomly allocated to two groups: a dual-task (DT) (n=8) or a single-task (ST) (n=8) training group. Flexibility and pulmonary function were assessed before and after HRS training. Both groups underwent HRS training for 4 weeks, 3 times/week in 15-minute training sessions. The ST group underwent HRS training and the DT group underwent dual-task HRS training, which consisted of throwing and catching a ball and ring catching while HRS training. Results: Training significantly increased flexibility and FVC (forced vital capacity) and FEV1 (forced expiratory volume in 1 second) in both groups (p<0.05), but FEV1/FVC and PEF (peak expiratory flow) were not significantly different after training in both groups (p>0.05). After the training, flexibility and FVC in the DT group were significantly greater than in the ST group (p<0.05), but FEV1, FEV1/FVC, and PEF were not significantly different (p>0.05). Conclusion: Simultaneous dual-task and HRS motor training improved flexibility, FVC, and FEV1, and our comparative analysis suggests that dual-task HRS training improved flexibility and FVC more than single-task training.

Effect of Earthquake Disruptions of Freight Transportation in A Megacity: Case Study for The Los Angeles Area

  • Abadi, Afshin;Ioannou, Petros;Moore, James E. II;Bardet, Jean-Pierre;Park, Jiyoung;Cho, Sungbin
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.1
    • /
    • pp.110-147
    • /
    • 2022
  • Many megacities are exposed to natural hazards such as earthquakes, and when located in coastal regions, are also vulnerable to hurricanes and tsunamis. The physical infrastructures of transportation systems in megacities have become so complicated that very few organizations can understand their response to extreme events such as earthquakes and can effectively mitigate subsequent economic downfalls. The technological advances made in recent years to support these complex systems have not grown as fast as the rapid demand on these systems burdened by population shift toward megacities. The objective of this paper is to examine the risks imposed on and recoveries of transportation systems in megacities as the result of extreme events such as an earthquake. First, the physical damage to transportation infrastructure, loss of the transportation system performance, and the corresponding economic loss from disruptions to passenger and freight traffic is evaluated. Then, traffic flows are re-routed to reduce vehicles' delay due to earthquakes using a microscopic traffic flow simulator with an optimization model and macroscopic terminal simulator. Finally, the economic impact of the earthquake is estimated nationwide. Southern California is regarded as the region of study. The results demonstrate the effectiveness of the integrated model and provide what and how to prepare innovative resilience policies of urban infrastructure for a natural disaster occurrence.

Design of Intersection Simulation System for Monitoring and Controlling Real-Time Traffic Flow (실시간 교통흐름의 모니터링 및 제어를 위한 교차로 시뮬레이션 시스템 설계)

  • Jeong Chang-Won;Shin Chang-Sun;Joo Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.85-97
    • /
    • 2005
  • In this paper, we construct the traffic information database by using the acquired data from the traffic information devices installed in road network, and, by referring to this database, propose the intersection simulation system which can dynamically manage the real-time traffic flow for each section of road from the intersections, This system consists of hierarchical 3 parts, The lower layer is the physical layer where the traffic information is acquired on an actual road. The traffic flow control framework exists in the middle layer. The framework supports the grouping of intersection, the collection of real-time traffic flow information, and the remote monitoring and control by using the traffic information of the lower layer, This layer is designed by extending the distributed object group framework we developed. In upper layer, the intersection simulator applications controlling the traffic flow by grouping the intersections exist. The components of the intersection application in our system are composed of the implementing objects based on the Time-triggered Message-triggered Object(TMO) scheme, The intersection simulation system considers the each intersection on road as an application group, and can apply the control models of dynamic traffic flow by the road's status. At this time, we use the real-time traffic information collected through inter-communication among intersections. For constructing this system, we defined the system architecture and the interaction of components on the traffic flow control framework which supports the TMO scheme and the TMO Support Middleware(TMOSM), and designed the application simulator and the user interface to the monitoring and the controlling of traffic flow.

  • PDF

Development of Multiphase Flow Simulator Using the Fractional Flow Based Approach for Wettability Dependent NAPL Migration (친수성에 의존하는 소수성 액체의 거동을 위한 분율 유동 접근 방식을 이용한 다상 유동 수치 모델링 개발)

  • Suk, Hee-Jun;Yeo, In-Wook;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.161-170
    • /
    • 2011
  • The multiphase flow simulator, CHEMPS, was developed based on the fractional flow approach reported in the petroleum engineering literature considering fully three phase flow in physically and chemically heterogeneous media. It is a extension of MPS developed by Suk and Yeh (2008) to include the effect of wettability on the migration of NAPL. The fractional flow approach employs water, total liquid saturation and total pressure as the primary variables. Most existing models are limited to two-phase flow and specific boundary conditions when considering physically heterogeneous media. In addition, these models focused mainly on the water-wet media. However, in a real system, variations in wettability between water-wet and oil-wet media often occur. Furthermore, the wetting of porous media by oil can be heterogeneous, or fractional, rather than uniform due to the heterogeneous nature of the subsurface media and the factors that affect the wettability. Therefore, in this study, the chemically heterogeneous media considering fractional wettability as well as physically heterogeneous media were simulated using CHEMPS. In addition, the general boundary conditions were considered to be a combination of two types of boundaries of individual phases, flux-type and Dirichlet type boundaries.