• Title/Summary/Keyword: flow monitoring

Search Result 1,245, Processing Time 0.032 seconds

Rural Stream Monitoring for Investigation of Stream Depletion in Rural Area (농촌소하천 건천화 실태조사를 위한 하천 수문.수질 모니터링)

  • Kim, Sung Min;Kim, Sung Jae;Kim, Sang Min
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.129-141
    • /
    • 2012
  • The purpose of this study was to monitor the stream flow of rural streams for investigating the status of stream depletion located downstream of irrigation reservoir. Bonghyun and Hai reservoirs area, located in Hai-myeon, the city of Gosung, Gyeongsangnam Province, were selected for study watersheds and streams. Stream flow monitoring was conducted 7 times from March to September, 2011. Stream flow was measured for 8 stations downstream from two reservoirs. The stream depletion was found in most of the downstream of reservoirs for the non-irrigation period and even in the irrigation period when there were a lot of antecedent precipitation. The correlation analysis for water quality data indicated that the correlation between BOD and T-N was highest for the reservoirs. The correlation between BOD, T-N, and turbidity was high for Hai reservoir and Bonghyeon reservoir. Continuous monitoring for rural streams located in downstream of reservoirs are required to quantify the status of stream flow depletion and determine the amount of environmental flows.

Scalable Network Architecture for Flow-Based Traffic Control

  • Song, Jong-Tae;Lee, Soon-Seok;Kang, Kug-Chang;Park, No-Ik;Park, Heuk;Yoon, Sung-Hyun;Chun, Kyung-Gyu;Chang, Mi-Young;Joung, Jin-Oo;Kim, Young-Sun
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.205-215
    • /
    • 2008
  • Many control schemes have been proposed for flow-level traffic control. However, flow-level traffic control is implemented only in limited areas such as traffic monitoring and traffic control at edge nodes. No clear solution for end-to-end architecture has been proposed. Scalability and the lack of a business model are major problems for deploying end-to-end flow-level control architecture. This paper introduces an end-to-end transport architecture and a scalable control mechanism to support the various flow-level QoS requests from applications.

  • PDF

The Cost Monitoring of Construction Projects through Earned Value Analysis

  • Waris, Muhammad;Khamidi, Mohd Faris;Idrus, Arazi
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.4
    • /
    • pp.42-45
    • /
    • 2012
  • In construction industry, the term 'procurement' is considered as a project based job where clients and contractors are always keen to observe performance indicators. These indicators represent financial and non-financial efficiency of project activities. Among these, the monitoring of financial indicators such as cost monitoring is an ongoing process and its importance cannot be undermined during the project life cycle. It can be monitored by using traditional approach of direct reporting of actual cost against budget. However, the comparison of budget versus actual spending does not indicate the worth of the work which is completed at any given time. This approach does not represent the true cost performance of the project. Because of these limitations, this paper discusses the applications of Earned Value Analysis (EVA) for cost monitoring of construction projects in Malaysia. Besides traditional approach, EVA is a three-dimensional approach that compares three cost indicators i.e. the budgeted value of work scheduled with the earned value of physical work completed and the actual cost of work completed. Therefore, cost monitoring by EVA is an objective measure of actual work performed. This paper uses a case study, an example application of EVA as a cost monitoring tool. This case study reaffirms the benefits of using EVA for project cash flow analysis and forecasting.

A Machine Learning-based Real-time Monitoring System for Classification of Elephant Flows on KOREN

  • Akbar, Waleed;Rivera, Javier J.D.;Ahmed, Khan T.;Muhammad, Afaq;Song, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2801-2815
    • /
    • 2022
  • With the advent and realization of Software Defined Network (SDN) architecture, many organizations are now shifting towards this paradigm. SDN brings more control, higher scalability, and serene elasticity. The SDN spontaneously changes the network configuration according to the dynamic network requirements inside the constrained environments. Therefore, a monitoring system that can monitor the physical and virtual entities is needed to operate this type of network technology with high efficiency and proficiency. In this manuscript, we propose a real-time monitoring system for data collection and visualization that includes the Prometheus, node exporter, and Grafana. A node exporter is configured on the physical devices to collect the physical and virtual entities resources utilization logs. A real-time Prometheus database is configured to collect and store the data from all the exporters. Furthermore, the Grafana is affixed with Prometheus to visualize the current network status and device provisioning. A monitoring system is deployed on the physical infrastructure of the KOREN topology. Data collected by the monitoring system is further pre-processed and restructured into a dataset. A monitoring system is further enhanced by including machine learning techniques applied on the formatted datasets to identify the elephant flows. Additionally, a Random Forest is trained on our generated labeled datasets, and the classification models' performance are verified using accuracy metrics.

Background and Local Histogram-Based Object Tracking Approach (도로 상황인식을 위한 배경 및 로컬히스토그램 기반 객체 추적 기법)

  • Kim, Young Hwan;Park, Soon Young;Oh, Il Whan;Choi, Kyoung Ho
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.11-19
    • /
    • 2013
  • Compared with traditional video monitoring systems that provide a video-recording function as a main service, an intelligent video monitoring system is capable of extracting/tracking objects and detecting events such as car accidents, traffic congestion, pedestrian detection, and so on. Thus, the object tracking is an essential function for various intelligent video monitoring and surveillance systems. In this paper, we propose a background and local histogram-based object tracking approach for intelligent video monitoring systems. For robust object tracking in a live situation, the result of optical flow and local histogram verification are combined with the result of background subtraction. In the proposed approach, local histogram verification allows the system to track target objects more reliably when the local histogram of LK position is not similar to the previous histogram. Experimental results are provided to show the proposed tracking algorithm is robust in object occlusion and scale change situation.

Water Quality Analysis in Nakdong River Tributaries (낙동강 지류·지천 모니터링 결과를 이용한 수질환경 평가)

  • Im, Tae Hyo;Son, Younggyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1661-1671
    • /
    • 2016
  • Water quality in Nakdong river was analyzed using 699 monitoring data sets including flow rates and water quality concentrations collected at 195 tributary monitoring stations (the priority management areas: 35 stations, the non-priority management areas: 160 stations) in 2015. The highest average concentrations of all data for BOD, COD, T-N, T-P, SS, and TOC were 30~600 times higher than the lowest concentrations while the highest average loading rates were 800,000~2,700,000 times higher than the lowest loading rates. Because of the very large differences in the concentrations and loading rates, the variation of the concentrations and loading rates in a priority management monitoring station for BOD, T-P, and TOC was analyzed using the coefficient of variation, the ratio of the standard deviation value to the mean value. For BOD, T-P, and TOC, the coefficients of variation for concentration were mostly less than 100%, whereas the coefficients of variation for loading rate ranged from 31.1% to 232.2%. The very big difference in the loading rates was due to the large variation in flow rates. As a result of this, the estimation of water quality at each monitoring station using the average values of the concentrations and loading rates might be not rational in terms of their representativeness. In this study, new water quality analysis methods using all collected monitoring data were suggested and applied according to the water quality standard in medium-sized management areas.

Effect of Stormwater Runoff on Combined Sewer Overflows in Korea

  • Kim, Lee-Hyung;Kim, Il-Kyu;Lee, Young-Sin;Lim, Kyeong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The Kuem-River, one of the largest rivers in Korea, is the primary water source for more than 4 million people in Kongju city and surrounding area. To study the effect of stormwater runoff to CSOs, twelve monitoring sites were selected in two large cities (City of Kongju and City of Buyeo) near the Kuem-River. Monitoring was reformed by collecting grab samples, measuring flow rates during dry and wet seasons during over two rainy seasons. Generally the flow rate of wastewater in combined sewers was rapidly decreased after 23:00 P.M. and gradually increased from 06:30 A.M. in all sites during the dry season. The concentrations of pollutant increase approximately 5 to 7 fold for TSS and 1.5 to 2.5 fold for BOD during the rainy season. Monitoring and statistical analysis show that the groundwater contributes on sewage volume increase (average 25-45% more) during dry periods and the stormwater runoff contributes approximately 51-72% increase during rainy periods. Generally the concentrations of combined sewage were more polluted during the first flush period than after the first flush during a storm event.

On-line Monitoring of a Glucose Concentration on a Fermentation Process of Wine for an Automatic Control of a Fermentation Process (발효공정 자동제어를 위한 포도주 발효 중 포도당 농도 온라인 측정)

  • Song, Dae-Bin
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.276-281
    • /
    • 2008
  • A flow injection analysis method (FIA), which analyzes sample conditions after injecting a sample and reagents into a continuous stream, are recognized as the most adequate analyzing method according to the increase of sampling frequency, the decrease of measuring time and the diversity of measuring targets. Specially, the FIA is considered to be used effectively for the control of a fermentation process to produce fermentation food and useful microbial production by activation of a fermentation industry for development of biological materials. In this study, a flow injection analysis sensor unit was developed for on-line monitoring of the fermentation process. The performance was verified by on-line measuring the concentration of glucose of the fermentation process of wine. The glucose concentrations of the samples were measured every 12 hours during the whole fermentation process and compared with those by a HPLC. The concentration relative errors of glucose on the fermentation process of wine showed below 30% within 72 hours and over 50% after the 72 hours. The sensor unit had potential to on-line monitoring of the fermentation process but some problems to overcome for an commercial application.

Development of Multi-Sensor based River Monitoring Technology for River Flood Risk surveillance (하천 홍수 위험 감시를 위한 다중센서 기반 하천 관측 기술 개발)

  • Jang, Bong-Joo;Jung, In Taek
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.11
    • /
    • pp.1372-1382
    • /
    • 2020
  • This paper proposes a core technology for a micro river monitoring terminal device suitable for flood monitoring in small rivers and valleys. Our proposed device is basically equipped with a 77GHz radar, gyro and accelerometer sensors. To measure the flow velocity and water level, we proposed a signal processing technique that extracts pure water energy components from the observed Doppler velocity and reflection intensity from the radar. And to determine the stability of the river structure equipped with our device, we constantly monitor the displacement of the measured values of the gyro and accelerometer sensors. Experimental result verified that our method detects pure water energy in various river environments and distinguishes between flow velocity and water level well. And we verified that vibration and position change of structures can be determined through a gyro sensor. In future research, we will work to build a secure digital twin river network by lowering the cost of supplying RF-WAV devices. Also we expect our device to contribute to securing a preventive golden time in rivers.

Immobilization of Photobacterium Phosphoreum for Monitoring of Toxic Substances

  • Uck-Han Chun;Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.141-146
    • /
    • 1997
  • A new sensing system based on the immobilization of luminescent batcteria, Photobacterium phosphoreum, was proposed for continuous real-time monitoring of polluants. The response curves demonstrate that Photobacterium phosphoreum immobilized on the strontium alginate was very sensitive to seven reference chemicals used. The significant inhibitory concentrations for bioluminescence emission were 5 ppm for Pb(NO3)2, NiCl2, CdCl2, 50 ppm for NaAsO2, 0.1ppm for HgCl2, 0.5ppm for pentachlorophenol and less than 5ppm for SDS, respectively. The alginate mixed-cells (AMC) retained their luminescence during experimental period (29 days) under storage condition of -8$0^{\circ}C$. The variables affecting performance of continuous flow through monitoring (CFTM) were optimized in order to ensure stability and efficiency. The flow through cell with strontium-alginate immobilized luminescent bacteria was tested with salicylate and 4-nitrophenol and a rapid response of luminescence was recorded by time drive mode in bioluminescence spectrometer after exposure to both toxicants.

  • PDF