• Title/Summary/Keyword: flow increase

Search Result 5,854, Processing Time 0.028 seconds

Dynamic analysis of a cage affected by the current (조류의 영향을 바든 가두리의 거동해석)

  • Lee, Mi-Kyung;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.214-224
    • /
    • 2004
  • A large cage system for the purpose of fishes farming in the open sea was influenced by various forces from the ocean environment. The deformation of the cage by these forces affects the safety of the cage itself, as well as that of the cultivated creatures. In this research, theoretical model was established to analyzing dynamic movement influenced by current for cage. Also, to increase the accuracy of calculations, the reduction ratio of flow speed acquired using the flume tank experiment. Applying the reduction ratio of flow speed to the numerical calculation, the calculation values were compared with the measured values in the flume tank experiment using cage model. The results were as follows ; 1. When the flow speed of the flume tank is fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of porosity ratio of netting. 2. When the porosity ratio is fixed, the increase of the velocity of flow which is passed the upper panel side is proportion to the increase of velocity of flow. 3. When the porosity ratio and the flow speed of the flume tank are fixed, the decrease of the velocity of flow which is passed the upper panel side is proportion to the increase of attack angle. 4. As a result of comparison between the underwater shape by simulation which is applying the reduction ratio of flow speed from the experiment using plane netting and that by model experiment, it was found out that the result of the simulation was very close to that of model gear within ${\pm}$ 5 % error range.

A Study on the Properties of Cement Mortar Using Blended Sand (혼합모래를 사용한 시멘트 모르터의 특성에 관한 연구)

  • Park Yong-Kyu;Kim Min-Ho;Yoon Gi-Won;Ryu Hyun-Gi;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.65-68
    • /
    • 2005
  • This paper investigated the engineering properties of cement mortar mixed with more than 2 kinds of sand. For fresh mortar properties, unit volume weight is constant regardless of mixing content and type of sand. An increase in contents of river and crushed sand resulted in an increase in flow, whereas an increase in recycled sand contents reduced flow. Gap between maximum flow in N3C0R0 and minimum flow in N0C0R3 exhibited about $12\%$. Compressive strength at 28 days ranged from 32 to 36 MPa in order for crushed sand, river sand and recycled sand. Mortar with mixed sand along with river sand and crushed sand showed compressive strength comparable to crushed sand. An increase of fraction of recycled sand in mixed sand resulted in a decrease in compressive strength. For drying shrinkage, N0C0R3 had the largest drying shrinkage among various mixture type. The combination of large contents of recycled sand and small contents of river and crushed sand had a large amount of drying shrinkage.

  • PDF

Flue Gas Sulfur Dioxide Removal Performance of a Bench-Scale Spray Absorption/Drying Reactor (실험실적 규모의 분무흡수건조반응기의 배출가스 중 아황산가스 처리성능 연구)

  • 동종인;구우회;임대현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 1996
  • The main purpose of this study was to investigate sulfur dioxide removal performance of flue gas desulfurization system utilizing a Spray Absorption/Drying Reactor. In this system, the size of droplets was considered the most significant factor and tested using a PDA system. Lime slurry flow rate, operating temperature, calcium/sulfur (Ca/S) ratio and applied air pressure were selected as major operation variables and tested/analyzed in terms of system performance. The results are as follows. 1. The $SO_2$ removal efficiencies were 49%, 74%, 85% for Ca$(OH)_2$ slurry flow rate of 10, 20, 30 ml/min, which implies that the increase of slurry flow rate improves removal efficiency. The optimum slurry flow rate in this study was, however, considered 20 ml/min because of constraints of system troubles and absorbent utilization. 2. As Ca/S ratio increased, $SO_2$ removal efficiency was observed to increase. 3. As air pressure, at the atomizing nozzole, increased from 3 to 5 $kg/cm^2, SO_2$ removal efficiency increased from 74% to 80%, because of droplet size reduction due to pressure increase during atomizing process and the increase of surface area, helping mass transfer between gas and liquid phase.

  • PDF

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

Effect of Intersection Angle of the Flow-focusing Type Droplet Generation Device Channel on Droplet Diameter by using Numerical Simulation Modeling (수치해석 모델링을 이용한 교차 흐름 미세유체 액적 생성 디바이스 채널 교차각이 액적 직경에 미치는 영향)

  • Kim, Shang-Jin;Kang, Hyung-Sub;Yang, Yeong-Seok;Kim, Gi-Beum
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.61-68
    • /
    • 2015
  • In this paper, we studied the effects of intersection angles of the flow-foucusing type droplet generation device inlet channel on droplet diameter using numerical simulation modeling. We modeled different intersection angles with a fixed continuous channel width, dispersed channels width, orifices width, and expansion channels width. Numerical simulations were performed using COMSOL Multiphysics$^{(R)}$ to solve the incompressible Navier-Stokes equations for a two-phase flow in various flow-focusing geometries. Modeling results showed that an increase of the intersection angle causes an increase in the modification of the dispersed flow rate ($v^{\prime}{_d}$), and the increase of the modification of the continuous flow rate ($v^{\prime}{_c}$) obstructs the dispersed phase fluid flow, thereby reducing the droplet diameter. However, the droplet diameter did not decrease, even when the intersection angle increased. The droplet diameter decreased when the intersection angle was less than $90^{\circ}$, increased at an intersection angle of $90^{\circ}$, and decreased when the intersection angle was more than $90^{\circ}$. Furthermore, when the intermediate energy deceased, there was a decrease in the droplet diameter when the intersection angle increased. Therefore, variations in the droplet diameter can be used to change the intersection angle and fluid flow rate.

Implementation of Non-Invasive Pressurized Cerebral Perfusion Platform (가압식 비침습적 대뇌 혈류 증가 장치의 구현)

  • Lee, Jean;Yu, Hyeong-gon;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.171-174
    • /
    • 2017
  • One of the treatments and preventions of strokes such as ischemic stroke is to increase cerebral blood flow. This aims to minimize the size of the stroke by increasing the quantity of blood to the cerebral region circuitously. Several ways to increase cerebral blood flow are a therapy though drugs and through surgery. However these invasive method giving a burden to the patient, the problem of inducing a number of complications were noted. In this thesis, we propose a non-invasive cerebral blood flow augmentation device to compensate for the disadvantages of these invasive treatments. To compensate for the shortcomings of the existing cerebral blood flow device, apply a positive measure of the patient's extremities to measure the blood pressure of the patient's blood pressure and conduct a frontal injection of blood flow to increase blood flow. Although somewhat inadequate blood flow increases compared to conventional devices, blood flow can be significantly increased, which can be selectively.

  • PDF

Effect of heat Leak on Cycle Characteristics of Refrigerator (냉장고 사이클 특성에 미치는 열손실량의 영향)

  • 신진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.871-879
    • /
    • 1998
  • The refrigerator consists of many components such as compressor condenser expansion valve evaporator and the cabinet which filled by urethane foam. In this paper the heat leakage of refriger-ator is measured by the new experiment method which is different from a present method, The devi-ation of the UA(overall heat transfer coefficient times area) between the simulation and experiments is about 7-8%. Using the modeling of various components of refrigeration system a performance analysos of CFC 12 and HFC 134a is performed numerically on the UA. As the results of this study according to increase the heat leakage the refrigeration load and mass flow rate of refrigerant are increased. And the increase of the mass flow rate results in the increase of the condensing and evapo-rating temperature. Therefore according to increase of the heat leakage the COP leads to increase because the increase of refrigeration capacity is larger than the increase if compressor power.

  • PDF

An Experimental study on heat transfer of a falling liquid film in air channel flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

An Experimental Study on the Flow Characteristics Inside an Open Two-Phase Natural Circulation Loop (개방된 2상 자연순환 회로내의 유동특성에 관한 실험적 연구)

  • 경익수;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1313-1320
    • /
    • 1993
  • Flow patterns inside the riser section and the effects of the heater inlet-and exit-restrictions, liquid charging level and the heater inlet subcooling on the flow characteristics inside an open two-phase natural circulation loop were studied experimentally. Three basic circulation modes were observed ; periodic circulation (A)(flow oscillations with incubation(no boiling) period), continuous circulations(stable operation mode with no flow oscillations), and periodic circulation (B) (flow oscillations with continuous boiling). The circulation rate increases and then decreases with the increase of the heating rate and the maximum circulation rate appears with the continuous circulation mode. The decrease of the inlet-restriction or the increase of the exitrestriction destabilizes the system. When the liquid charging level or the inlet subcooling decreases, the continuous circulation mode starts at the lower heating rate and the system is stabilized.

An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun;Lee, Dae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.