• Title/Summary/Keyword: flow domain

Search Result 974, Processing Time 0.025 seconds

Numerical Computations on the Hydrodynamic Forces by Internal Waves in a Sediment Pocket (퇴적 침전구에서 발생하는 내면파 유동에 의한 유체력 해석)

  • Kyoung Jo-Hyun;Kim Jang-Whan;Bai Kwang-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical method is developed to solve a two-dimensional diffraction problem for a body located in a sediment pocket where a heavier muddy water is trapped. In the present study, the wave exciting forces acting on a submerged body in the water-sediment interface by an incident wave is investigate. It is assumed that the heavier mud is trapped locally in a sediment pocket. A mathematical formulation is made in the scope of the potential theory. The fluid is assumed to be inviscid, incompressible and its motion irrotational. The boundary conditions on the unknown free surface and interface are linearized. As a method of solution, the localized finite-element method is adopted. In the method, the computation domain is reduced by utilizing the complete set of analytic solutions known in the infinite subdomain to be truncated by introduction of an appropriate juncture conditions. The main advantage of this method is that any complex geometry of the boundaries can be easily accommodated. Computations are carried out for mono-chromatic plane progressive surface waves normally incident on the domain. Numerical results are compared with those obtained by Lassiter based on Schwingers variational method. Good Agreements are obtained in general. Another numerical computations are made for the cases with and without a body in the sediment pocket.

  • PDF

A Study on the Coastal Navigation Safety by Navigational Risk Assessment Model (항해위험평가모델에 의한 연안역 항해의 안전 제고에 관한 연구)

  • KIM, Won-Ouk;KANG, Song-Jin;YOUN, Dae-Gwun;BAE, Jun-Young;KIM, Chang-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.201-208
    • /
    • 2017
  • The major cause of the marine accidents is the collision with a moving object such as ship as well as the fixed object such as breakwater. Therefore, the most effective way to reduce the maritime ship accidents is the prevention of collision. In order to decrease the collision, it is principle that the navigation officer promptly judges the dangerous condition and makes the quick response. The ship does not allow any object or other ships approaching its surrounded area called ship area so that it prevents the collision. Generally, the ship which has high speed or poor maneuvering capability shall be managed from the distance so that the other ship does not invade its ship domains(watching distance, blocking distance). Accordingly, this study sets the navigational risk assessment model by applying ship dynamic domain and collision judgement method considered ship length, speed and navigational capability. It also reviewed the validity of the model and evaluated the perilous water way (Maenggol Channel) and a curved route near Maenggol Channel. As a result, in case of a ship with 100m in length passing Maenggol Channel, it represented "warning" level before 1.5nm to the entry, "dangerous"level 0.75nm before to it and "very dangerous" level 0.5nm before to it and then "dangerous"level again up to the entry. Applying to the curved route also showed the same results as the Narrow Channel or Maenggol Channel. This analysis highly matched with the actual navigation results. In the future, this model will be useful for coastal navigation safety chart development and safety evaluation for route or port development. It also allows to evaluate the dangerous route or the best route by applying the result into ECDIS so that it will finally help to reduce the marine accidents. Eventually the model will be effective for the marine traffic simulation evaluation forced by Maritime Traffic Safety Act.

History of Domestic Web Design - Focused on Design Expression Techniques and Technological Changes - (국내 웹 디자인 변천사 - 디자인 표현기법과 기술적 변화를 중심으로 -)

  • Lee, HyunJu;Hong, MiHee
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.200-208
    • /
    • 2020
  • The domain of Web design gradually expands with the utilization of the Web and the development of technologies, but there are insufficient related studies. Thus, this study would recognize the importance of the Web design market and present the direction of designs in the future by investigating the process of changes in Web design. This study investigated the background of the revelation and evolution of design expression techniques and the flow of the information technology affecting the design and conducted a study analyzing the process of changes of Web design based on this. It is judged that this study has significance as the baseline research material for the expansion of the Web design domain of the future. As for the scope of the research, based on 30 years of the history of the Web, this study was conducted with materials on Websites, which had become issues from 1990 through the early-2000s and selected the winners of a grand prize in Web Award Korea since the mid-2000s as the subjects of analysis. This study analyzed the formative characteristics of design expression techniques and the characteristics of the information technology that affected Web design. As a result of the research, changes in design expression techniques could be divided broadly into minimalism and skeuomorphism, and it was found that the methods of expressing Web designs changed in various ways, affected by the development of information technology. It is predicted that with the emergence of various devices and the vitalization of video contents, the designs affected by minimalism, which can harmonize with them, will continue in the future.

A Numerical Method for Nonlinear Wave-Making Phenomena (비선형 조파현상의 수치해법)

  • Jang-Whan Kim;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • A numerical method for nonlinear free-surface-wave problem is developed in this paper. The final goal of this study is to simulate the towing tank experiment of a ship model and to partially replace the experiment by the numerical model. The exact problem in the scope of potential flow theory is formulated by a variational principle based on the classical Hamilton's principle. A localized finite element method is used in the present numerical computations which made use of the following two notable steps. The first step is an efficient treatment of the numerical radiation condition by using the intermediate nonlinear-to-linear transition buffer subdomain between the fully nonlinear and linear subdomains. The second is the use of a modal analysis in the final stage of the solution procedures, which enables us to reduce the computation time drastically. With these improvements the present method can treat a much larger computational domain than that was possible previously. A pressure patch on the free surface was chosen as an example. From the present computed results we could investigate the effect of nonlinearity on the down-stream wave pattern more clearly than others, because much larger computational domain was treated. We found, specifically, the widening of the Kelvin angle and the increase of the wave numbers and the magnitude of wave profiles.

  • PDF

Application of MPI Technique for Distributed Rainfall-Runoff Model (분포형 강우유출모형 병렬화 처리기법 적용)

  • Chung, Sung-Young;Park, Jin-Hyeog;Hur, Young-Teck;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.747-755
    • /
    • 2010
  • Distributed Models have relative weak points due to the amount of computer memory and calculation time required for calculating water flow using a numerical analysis based on kinematic wave theory when compared to the conceptual models used so far. Typically, the distributed models have been mainly applied to small basins. It was necessary to decrease the resolution of the grid to make it applicable for large scale watersheds, and because it would take up too much time to calculate using a higher resolution. That has been one of the more difficult factors in applying the model for actual work. In this paper, MPI (Message Passing Interface) technique was applied to solve the problem of calculation time as it is one of the demerits of the distributed model for performing physical and complicated numerical calculations for large scale watersheds. The comparison studies were performed a single domain and a divided small domain in Yongdam Dam watershed in case of typoon 'Ewiniar' at 2006. They were compared to analyze the application effects of parallelization technique. As a result, a maximum of 10 times the amount of calculation time was saved but keeping the level of quality for discharge by using parallelization code rather than a single processor.

Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data (진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델)

  • Kim, Seung-il;Noh, Yoojeong;Kang, Young-jin;Park, Sunhwa;Ahn, Byungha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • With the development of machine learning techniques, various types of data such as vibration, temperature, and flow rate can be used to detect and diagnose abnormalities in machine conditions. In particular, in the field of the state monitoring of rotating machines, the fault diagnosis of machines using vibration data has long been carried out, and the methods are also very diverse. In this study, an experiment was conducted to collect vibration data from normal and abnormal compressors by installing accelerometers directly on rotary compressors used in household air conditioners. Data segmentation was performed to solve the data shortage problem, and the main features for the fault classification model were extracted through the chi-square test after statistical and physical features were extracted from the vibration data in the time domain. The support vector machine (SVM) model was developed to classify the normal or abnormal conditions of compressors and improve the classification accuracy through the hyperparameter optimization of the SVM.

Numerical Simulation on the Wind Ventilation Lane and Air Pollutants Transport due to Local Circulation Winds in Daegu Districts (대구지역의 국지순환풍의 환기경로 및 대기오염수송에 관한 수치모의)

  • Koo, Hyun-Suk;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.418-427
    • /
    • 2004
  • Recently, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane is widely practiced in many countries. The concept of urban ventilation lane is mainly aimed to improve the thermal comfort within urban area in summer season. It has also the aim to reduce the urban air pollution by natural cold air drainage flows which are to be intensified by a suitable alignment of buildings as well as use zonings based on scientific reasons. In this study, the prevailing wind ventilation lane of a local wind circulation and around Daegu for a typical summer days was investigated by using a numerical simulation. The transport of air pollutants by the local circulation winds was also investigated by using the numerical simulation model, the RAMS (Reasonal Atmospheric Model System).The domain of interest is the vicinity of Daegu metropolitan city (about 900 km2). The horizontal scale of the area is about 30 km. The simulations were conducted under a late spring synoptic condition with weak gradient wind and almost clear sky. From the numerical experiment, the following three conclusions were obtained: (1) The major wind passages of the local circulation wind generated by radiative cooling over the representative mountains of Daegu (Mt. Palgong and Mt. Ap) were found. The winds blow down along the valley axis over the eastern part of Daegu as a gravity flow during nighttime. (2) At the flatland, the winds blow toward the western part of Daegu through the city center. (3) As the results, the air pollutants were transported toward the western part of Daegu by the winds during nighttime.

A Study on the Natural Evaporation Capacity of LPG Container (액화석유가스 용기의 자연 증발량에 관한 연구)

  • Jo Young-Do;Kim Ji-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.22-29
    • /
    • 2001
  • The number of gas containers and the period of exchanging gas containers are vsy important in designing liquefied petroleum gas(LPG) supply system for small capacity domain. And also the evaluation of remaining LPG in containers to be exchanged is very useful information in commerce. However seldon has been studied on calculating method about those with respect to gas consumption pattern. In this study, a simulation method was developed to estimate the evaporation capacity of LPG container, the mass gas flow rate from LPG container, the temperature and vapor pressure of LPG, and the remained LPG at containers to be exchange by using LPG property equations, mass balance equation, and heat balance equation. The simulation results were correlated well with experimental data. The overall heat transfer coefficient from air to LPG is approximately $9{\~}13 kcal/m^2{\cdot}hr{\cdot}^{\circ}C$ and does not strongly affect on the evaporation capacity of LPG container. The mass gas flow rate from LPG container is constant when the vapor pressure of LPG is within pressure regulator's control range. While, out of range, it suddenly reduce to a evaporation rate which is balanced with heat transfer from air. The evaporation capacity of LPG container increased with surrounding temperature and the composition of propane, and decreased drastically with continuous gas consumption. The number of gas containers divided the number of houses using gas supply system was reduced by using automatic gas feeding device.

  • PDF

Analysis of Consistency and Accuracy for the Finite Difference Scheme of a Multi-Region Model Equation (다영역 모델 방정식의 유한차분계가 갖는 일관성과 정화성 분석)

  • 이덕주
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • The multi-region model, to describe preferential flow, is an equation representing solute transport in soils by dividing soil into numerous pore groups and using the hydraulic properties of the soil. As the model partial differential equation (PDE) is solved numerically with finite difference methods. a modified equivalent partial differential equation(MEPDE) of the partial differential equation of the multi-region model is derived to analyze the accuracy and consistency of the solution of the model PDE and the Von Neumann method is used to analyze the stability of the finite difference scheme. The evaluation obtained from the MEPDE indicated that the finite difference scheme was found to be consistent with the model PDE and had the second order accuracy The stability analysis is performed to analyze the model PDE with the amplification ratio and the phase lag using the Von Neumann method. The amplification ratio of the finite difference scheme gave non-dissipative results with various Peclet numbers and yielded the most high values as the Peclet number was one. The phase lag showed that the frequency component of the finite difference scheme lagged the true solution. From the result of the stability analysis for the model PDE, it is analyzed that the model domain should be discretized in the range of Pe < 1.0 and Cr < 2.0 to obtain the more accurate solution.

  • PDF

Multi-view Image Generation from Stereoscopic Image Features and the Occlusion Region Extraction (가려짐 영역 검출 및 스테레오 영상 내의 특징들을 이용한 다시점 영상 생성)

  • Lee, Wang-Ro;Ko, Min-Soo;Um, Gi-Mun;Cheong, Won-Sik;Hur, Nam-Ho;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.838-850
    • /
    • 2012
  • In this paper, we propose a novel algorithm that generates multi-view images by using various image features obtained from the given stereoscopic images. In the proposed algorithm, we first create an intensity gradient saliency map from the given stereo images. And then we calculate a block-based optical flow that represents the relative movement(disparity) of each block with certain size between left and right images. And we also obtain the disparities of feature points that are extracted by SIFT(scale-invariant We then create a disparity saliency map by combining these extracted disparity features. Disparity saliency map is refined through the occlusion detection and removal of false disparities. Thirdly, we extract straight line segments in order to minimize the distortion of straight lines during the image warping. Finally, we generate multi-view images by grid mesh-based image warping algorithm. Extracted image features are used as constraints during grid mesh-based image warping. The experimental results show that the proposed algorithm performs better than the conventional DIBR algorithm in terms of visual quality.