• 제목/요약/키워드: flow domain

검색결과 971건 처리시간 0.022초

Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles

  • Lopes, M.F.P.;Paixao Conde, J.M.;Gomes, M. Gloria;Ferreira, J.G.
    • Wind and Structures
    • /
    • 제13권6호
    • /
    • pp.487-498
    • /
    • 2010
  • When designing structures to the wind action, the variation of the mean wind velocity and turbulence parameters with the height above the ground must be taken into account. This paper presents the numerical simulation results of atmospheric boundary layer (ABL) airflows, in a numerical domain with no obstacles and with a cubic building. The results of the flow characterization, obtained with the FLUENT CFD code were performed using the ${\kappa}-{\varepsilon}$ turbulence model with the MMK modification. The mean velocity and turbulence intensity profiles in the inflow boundary were defined in accordance with the Eurocode 1.4, for different conditions of aerodynamic roughness. The maintenance of the velocity and turbulence characteristics along the domain were evaluated in an empty domain for uniform incident flow and the ABL Eurocode velocity profiles. The pressure coefficients on a cubic building were calculated using these inflow conditions.

비압축성 점성 유동의 수치적 해석을 위한 사각형-삼각형 혼합 격자계 (Quadrilateral-Triangular Mixed Grid System for Numerical Analysis of Incompressible Viscous Flow)

  • 심은보;박종천;류하상
    • 한국CDE학회논문집
    • /
    • 제1권1호
    • /
    • pp.56-64
    • /
    • 1996
  • A quadrilateral-triangular mixed grid method for the solution of incompressible viscous flow is presented. The solution domain near the body surface is meshed using elliptic grid geneator to acculately simulate the viscous flow. On the other hand, we used unstructured triangular grid system generated by advancing front technique of a simple automatic grid generation algorithm in the rest of the computational domain. The present method thus is capable of not only handling complex geometries but providing accurate solutions near body surface. The numerical technique adopted here is PISO type finite element method which was developed by the present author. Investigations have been made of two-dimensional unsteady flow of Re=550 past a circular cylinder. In the case of use of the unstructured grid only, there exists a considerable amount of difference with the existing results in drag coefficient and vorticity at the cylinder surface; this may be because of the lack of the grid clustering to the surface that is a inevitable requirement to resolve the viscous flow. However, numerical results on the mixed grid show good agreements with the earlier computations and experimental data.

  • PDF

Prediction of Specific Noise Based on Internal Flow of Forward Curved Fan

  • Sasaki, Soichi;Hayashi, Hidechito;Hatakeyama, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.80-91
    • /
    • 2009
  • In this study, a prediction theory for specific noise that is the overall characteristic of the fan has been proposed. This theory is based on total pressure prediction and broadband noise prediction. The specific noises of two forward curved fans with different number of blades were predicted. The flow around the impeller having 120 blades (MF120) was more biased at a certain positions than the impeller with 40 blades (MF40). An effective domain of the energy conversion of MF40 has extended overall than MF120. The total pressure was affected by the slip factor and pressure loss caused by the vortex flow. The suppression of a major pressure drop by the vortex flow and expansion of the effective domain for energy conversion contributed to an increase in the total pressure of MF40 at the design point. The position of maximum relative velocity was different for each fan. The relative velocity of MF120 was less than that of MF40 due to the deviation angle. The specific noise of MF120 was 2.7 dB less than that of MF40 due to the difference in internal flow. It has been quantitatively estimated that the deceleration in the relative velocity contributed to the improvement in the overall performance.

유한요소법을 이용한 해수유동 해석 (I) (Analysis of Tidal Flow Using the Frequency Domain Finite Element Method (I))

  • 권순국;고덕구;조국광;김준현
    • 한국농공학회지
    • /
    • 제33권4호
    • /
    • pp.73-83
    • /
    • 1991
  • A numerical simulation of a 2-dimensional tidal flow in a shallow sea was performed using the frequency domain finite element method. In this study, to overcome the inherent problems of a time domain model which requires high eddy viscosity and small time steps to insure numerical stability, the harmonic function incorporated with the linearized function of governing equations was applied. Calculations were carried out using the developed tidal model(TIDE) in a rectangular channel of lOm(depth) X 4km (width) X 25km(length) under the condition of tidal waves entering the channel closed at one end for both with and without bottom friction damping. The predicted velocities and water levels at different points of the channel were in close agreement with less than 1 % error between the numerical and analytical solutions. The results showed that the characteristics of the tidal flow were greatly affected by the magnitude of tidal elevation forcing, and not by on surface friction, wind, or the linear bottom friction when the value was less than 0.01. For the optimum size of grid to obtain a consistent solution, the ratio between the length of the maximum grid and the tidal wave length should be less than 0.0018. It was concluded that the finite element tidal model(TIDE) developed in this study could handle the numerical simulation of tidal flows for more complex geometrical conditions.

  • PDF

Direct simulations on 2D mold-filling processes of particle-filled fluids

  • Hwang, Wook-Ryol;Kim, Worl-Yong;Kang, Shin-Hyun;Kim, See-Jo
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.193-200
    • /
    • 2009
  • We present a direct simulation technique for two-dimensional mold-filling simulations of fluids filled with a large number of circular disk-like rigid particles. It is a direct simulation in that the hydrodynamic interaction between particles and fluid is fully considered. We employ a pseudo-concentration method for the evolution of the flow front and the DLM (distributed Lagrangian multipliers)-like fictitious domain method for the implicit treatment of the hydrodynamic interaction. Both methods allow the use of a fixed regular discretization during the entire computation. The discontinuous Galerkin method has been used to solve the concentration evolution equation and the rigid-ring description has been introduced for freely suspended particles. A buffer zone, the gate region of a finite area subject to the uniform velocity profile, has been introduced to put discrete particles into the computational domain avoiding any artificial discontinuity. From example problems of 450 particles, we investigated the particle motion and effects of particles on the flow for both Newtonian and shear-thinning fluid media. We report the prolonged particle movement toward the wall in case of a shear-thinning fluid, which has been interpreted with the shear rate distribution.

광양만 권역의 영역 설정에 따른 입자확산 및 대기질 수치모의 비교 (Numerical Simulation and Comparison of Particle Dispersion and Air Quality with Domain Setting of Gwangyang Bay Area)

  • 이현미;이화운;이순환
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.591-605
    • /
    • 2010
  • Recirculation of airmass in coastal region occurs because of the change from land to sea breeze and was shown to produce a contrary result on air quality. This study examines the numerical simulation to analyze the effect of recirculation flow in Gwangyang Bay, Korea. For this purpose two case studies are performed by the WRF-FLEXPART-CMAQ modeling system, each for a different Meso-Synoptic Index. Additionally this research make a comparative study of large domain (Domain L) and small domain (Domain S). The horizontal wind fields are simulated from WRF. Changes in the land-sea breeze have an effect on the particle dispersion modeling. The numerical simulation of air quality is carried out to investigate the recirculation of ozone. Ozone is transported to eastward under strong synoptic condition (Case_strong) because of westerly synoptic flow and this pattern can confirm in all domain. However ozone swept off by the land breeze and then transported to northward along sea breeze under conditions of clear sky and weak winds (Case_weak). In this case re-advected ozone isn't simulate in Domain S. The study found that recirculation of airmass must be concerned when numerical simulation of air quality is performed in coastal region, especially on a sunny day.

On the domain size for the steady-state CFD modelling of a tall building

  • Revuz, J.;Hargreaves, D.M.;Owen, J.S.
    • Wind and Structures
    • /
    • 제15권4호
    • /
    • pp.313-329
    • /
    • 2012
  • There have existed for a number of years good practice guidelines for the use of Computational Fluid Dynamics (CFD) in the field of wind engineering. As part of those guidelines, details are given for the size of flow domain that should be used around a building of height, H. For low-rise buildings, the domain sizes produced by following the guidelines are reasonable and produce results that are largely free from blockage effects. However, when high-rise or tall buildings are considered, the domain size based solely on the building height produces very large domains. A large domain, in most cases, leads to a large cell count, with many of the cells in the grid being used up in regions far from the building/wake region. This paper challenges this domain size guidance by looking at the effects of changing the domain size around a tall building. The RNG ${\kappa}-{\varepsilon}$ turbulence model is used in a series of steady-state solutions where the only parameter varied is the domain size, with the mesh resolution in the building/wake region left unchanged. Comparisons between the velocity fields in the near-field of the building and pressure coefficients on the building are used to inform the assessment. The findings of the work for this case suggest that a domain of approximately 10% the volume of that suggested by the existing guidelines could be used with a loss in accuracy of less than 10%.

일차원 혈류해석을 위한 스펙트럴 요소 모델링 (Spectral Element modeling for the one-dimensional blood flow analysis)

  • 장인준;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.152-155
    • /
    • 2008
  • The blood flow characteristics have been closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral element model for the blood flow through blood vessels. The spectral element model is formulated by using the variational method. The nonlinear terms in spectral element model are all treated as the pseudo-force and an iterative solution method is applied in the frequency domain.

  • PDF

공기역학적 성능 향상을 위한 플랩의 최적 위치 선정 (SELECTION OF THE OPTIMAL POSITION OF THE FLAP FOR THE IMPROVEMENT OF AERODYNAMIC PERFORMANCE)

  • 강형민;박영민;김철완;이창호
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.41-46
    • /
    • 2013
  • The selection of the optimal position of the flap was performed in order to improve the aerodynamic performance during the take-off and landing processes of aircraft. For this, the existing airfoils of the main wing and flap are selected as the baseline model and the lift coefficients (cl) according to angle of attacks (AOA) were calculated with the change of the position of flap airfoil. The objective function was defined as the consideration of the maximum cl, lift to drag ratio and cl at certain AOA. Then, at 121 experimental points within $20mm{\times}20mm$ domain, two dimensional flow simulations with Spalart-Allmaras turbulence model were performed concerning the AOA from 0 to 15 degree. If the optimal position was located at the domain boundary, the domain moved to the optimal position. These processes were iterated until the position was included in the inside of the domain. From these processes, the flow separation at low AOA was removed and cl increased linearly comparing with that of the baseline model.

시간영역에서의 비선형 자유표면파문제에 대한 수치해석 (A time-domain analysis for a nonlinear free-surface problem)

  • 경조현;배광준;정상권;김도영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF