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A time-domain analysis for a noxlinear free-surface problem
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Abstract

The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval
ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the
potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to
the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus
the linearized free surface problem has been treated often in the past. But as the computational power increases,
there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a
time-dependent finite element method is developed to solve the problem. The initial-boundary problem is
formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a
highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

1. Introduction

This paper describes a finite element method applied to a
nonlinear free surface flow problem for a body moving in
three dimensions. The exact nonlinear free-surface flow
problem formulated by an initial/boundary value problem is
replaced by an equivalent weak formulation. The numerical
model is treated to simulate the towing tank experimental
conditions. The model is assumed to be vertical wall-sided
and stretched from the free surface to the bottom for
simplicity. The similar problem was considered earlier by
Bai, et.al.[1,2] where some irregularities were observed in
the downstream waves and a transom stern ship geometry
could not be treated. In the present paper, specifically,
three improvements are made from the earlier work. The
first improvement is the introduction of the S5-point
Chebyshev filtering scheme(Loguet-Higgins & Cokelet[3])
which eliminates the irregular and saw-toothed waves in the
downstream. The second improvement is that now we can
treat a transom Stern ship geometry. The third is the
introduction of a new boundary condition to simulate a dry
bottom behind a transom stern ship  which is stretched
from the free surface to the bottom at a high Froude
number.

The first model has a wedge-shaped bow and a parallel
body cut off at the stern, thus a transom stern ship model.
The second model is a vertical strut piercing free surface
with a normal angle of attack. Computations for the model
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are made to investigate the generation of a dry bottom
behind the model which is highly nonlinear phenomena.
Computations at higher Froude numbers show the flow
behind the model detaches and results in a dry bottom. The
computed results agree well with the preliminary
experimental observation for a dry-bottom, which is
reported in Bai,et al[4].

The present method can treat arbitrary water-depth and
practical ship geometries. Thus the present method does not
restrict to shallow water problem or special ship model
geometry stretched from the free surface to the bottom,
even though the computation is made for a simple model in
shallow water in the present paper. The numerical
simulation of the model can be applied to the local flow
behind a sail of a submarine in cruise, a sloshing problem in
LNG tankers, and a dam breaking problem.

2. Mathematical Formulation

We used the Cartesian coordinate in this paper. Oxyz is the
coordinate system with Oz opposing the direction of gravity
and z = 0 coincides the undisturbed free surface. The body
moves to the negative x-direction with velocity U. The
formulation is given in an inertial coordinate system.
However, in the numerical procedures, the computing box
is moving with the moving body. We assume that the fluid
is inviscid, incompressible and its motion is irrotational. So
the velocity potential exists and is defined as

u(X, 1) = Vo, 1) (D
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where X =(x,y,z)and ¢ is the velocity potential. From
the continuity condition we obtain the Laplace equation

V2¢(%,0)=0 in fluid domain D. 2)
The boundary condition on the body boundary surface, S,
is

¢n = ’_Unx . (3)

Where the vector, # = (n,,n,,n,), denotes the outward unit

"7 2
normal vector on the boundaries. The conditions on the free
surface, z={¢(x,y,t) can be given by the kinematic and

dynamic boundary conditions as follows.

£, =-UC, +ni¢n, @

4, =-Up, —%IWIZ —g-L )
0

Where g and p denote the gravitational acceleration and
the density of fluid and the pressure, p= p(x,y,f) is
taken zero unless a non-zero pressure distribution is

specified. The fluid motion is assumed to be at rest initially,
therefore the initial condition may be given as

¢=¢, =0 att=20 (6)
and the radiation condition is given as

¢—0 as x*+y? 5o (7

The depth of water is 4 , and the tank width, y = £Bh. The

wall boundary conditions are given as follows.

9,=0 on z=-h 8)
¢,=0 on y=1Bh %)

3. Variational Formulation

We introduce a variational formulation which is equivalent
to the above problem. First we define the variational
functional, J and the Lagrangian L (Miles[5],Luke[6])as

J= _ro Lt (10)

L=”§F¢g’d8—%H@gzds_%”ﬂw'zw (n

where S is the projection of S, on Oxy plane and s
the final time. Taking the variations on J first with respect
to ¢, wecanobtain §J, as

382

5J; = jo' d{ 1N (w;, —{5{—%[V¢|2§§)d5}

- | IEF 96¢],-- ~ 051, s (12)
_ JZ dz{ _“;:F (@ +%‘v¢|2 + gj&é’dS} :

Next the variations on J with respect tog, JJ,can be

obtained as

57, = J:)‘d{”@ £,5pdS - “J;W.WWV} (13)

- J; dt]i _”EF(;, —nigz),,)aq) ds + muvzgp 5¢dV}.
Here 6J=6J,+6J,; and n::1/1/1+§x2+§y2.

Equation (12) means that the stationary condition on J
for the variation with respect to ¢ recovers the dynamic

free surface condition in each time and that the wave

elevation at =0, ¢ should be specified as the constraints.
Eq(13) shows that the stationary condition on J for the
variation of ¢ recovers the kinematic condition on

S and the governing equation.

4, Finite-Element Discretization

As the first step in the numerical procedure, the fluid
domain is to discretize into a number of finite elements. In
this study, the finite elements are generated such that
projections of x and y coordinates on the horizontal plane
are fixed but the other coordinate, i.e. the z-axis, is allowed
to move vertically in time. This restriction makes the
regridding and computation considerably simple. But, it is
not always necessary to impose this restriction in general.
The trial basis is denoted by {N;}_, , and { is

on Sy which is also continuous and piecewise

differentiable on S .

¢(x,y,z,l):¢,»(Z)N,-(x,y,z;§) (14)
é‘(xﬂyJ) =é’k([)Mk(x’y) (]5)
where
M (x,y)= N, (x.9,2 QLZ; , k=1.,Np (16)

and N is the number of nodal points on S, and i,is
the nodal number of the basis function A, of which the

node coincides with that of the free surface node £.
Summation conventions for the repeated indices are used
here. It should be noted that the basis function, {N ,-},.:1 o

is dependent on the free surface shape, z={'(x, y,f), but its



restriction on Sp is the function of (xy) and

resulted from the finite-element subdivision employed here.
Once the trial function is approximated by using the above
basis function, the Lagrangian, L, for these trial solutions
are obtained as

L=0,Ty,-30K,8, == GRG, A
T, = ”@ MM dS (182)
Py = j L MM ;dS (18b)
Ky = [[[ v, -on,ar (18¢)

The tensors, K; , F; are the kinetic and potential energy
tensor and Ty, is a tensors obtained from the free surface

integral, which can be interpreted as a tensor related to the
transfer rate between these two energies. It is of interest to
note that in Eq(18), T,; = F,;. The stationary condition on

J = ILdt gives the following Euler-Lagrange equation.

Tyl =Ki 9 (19)
g =20 iy pr kel N (20)
Aty 270, K> v ANE

K¢, =0,i#i. €2y

5. Dry Bottom Condition

Here we will describe how to treat the dry-bottom condition
in the numerical computations. The presence of a dry
bottom causes a difficulty in the numerical scheme,
especially because a strong velocity gradient occurs across
the water-front line appearing in front of the dry bottom. In
the dry bottom we assumed the velocity to be zero. In order
to overcome the difficulty due to the change of
computational domain, we adopted a ‘thresh-hold
thickness” method where a thin water layer is kept in the
dry zone. It is a simple scheme often used to describe the
bore or run-up on beaches. The dry bottom condition is
given as

PDE = 0 on the dry bottom (22)
t

{=-h+e (23)
This means that the pressure on the dry bottom does not
change. The value of the thresh-hold was chosen such that
the Jacobian is not zero.

6. Results and Discussion

The computational model with a transom stern is shown in
Fig 1. This model has also a wvertical wall-sided

wedge-shaped bow and a parallel middle body extending
from the free surface to the bottom of the tank. The length
of the wedge, the length of the parailel middle body, and the
beam are nondimensionalized by the water depth, # and
denoted by L , L,, , and 25, respectively. The tank geometry

is the same as the first model.

:L =30 Lm=25 B=30
1x = (-60,60), y=(-30,30)
s Ax =0.5,4y =0.5,4t = 0.01

Transom stern model
Computation Domain
Mesh Sizes

For the transom stern ship model many cases are computed
for various values of Froude numbers. Table 1 shows the
computed cases for the transom stern models. In the
following we present only two computed results, Fig 2 and
Fig 3 show the wave contour and wave profiles at F, =1.8

for Case 1 and 2 shown in Table 1.

Table 1. Summary of the computed cases for the transom
stern ship models. (All dimensions are non-dimensionalized
with a water depth .)

Case 2b/h 2B/h L/h Lm/h
(1) 10 60 30 25
2) 15 60 30 25
y=8
vt
aoF —
I
e Lm g
1€ 7
y=-8

Figure 1. Sketch of transom stern ship model and tank in
horizontal plane view. The z-axis is against the gravity.

Figure 2. Contour plot and wave profile at F, =1.8 in the
case of (1) in table 2
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Figure 4. Wave profile and contour plot for vertical strut at =20, F 5 = 1.6.Strut Length = 20, width of tank = 80

Fig 4 show the wave profile and contour plot for vertical
strut at F, = 1.6 with the normal angle of attack. The figure

shows approximately triangular shapes of dry bottom
generated behind the body (transom stern and vertical strut
models).

As a concluding remark, based on the numerical tests, the
present numerical method can be used as an efficient
method to treat nonlinear free surface flow problems. Even
though the sample computations are made for rather special
and simple cases, i.e., a ship in shallow water tank, the
present method can accommodate arbitrary water depth (i.e.,
tank depth) , tank width, and ship geometry even for a
transom stern model. This method can also be applied to the
sloshing problem, the local flow around the sail of a
submarine, and the dam breaking problem.
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