• Title/Summary/Keyword: flow cell

Search Result 3,147, Processing Time 0.028 seconds

The Effects of Orostachys japonicus on HepG2 Cell Proliferation and Oncogene Expression (와송(瓦松)이 HepG2 cell의 세포분열 및 관련유전자 발현에 미치는 영향)

  • Moon, Young-Hun;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.48-59
    • /
    • 2005
  • Objectives : The aim of the study was to evaluate the effect of WS on HepG2 cell cycle and expression of related genes. Methods : The MTT assay, Cell counting analysis, $[^3H]-Thymidine$ Incorporation Assay, Flow cytometric analysis, Quantitative RT-PCR were studied. Results : WS inhibited HepG2 cell proliferation in low concentration$(1-10\;{\mu]g/ml)$ which did not cause direct cytotoxicity, with dose-dependant manner. WS in-hibited DNA synthesis as well. Flow cytometric analysis on the HepG2 cell showed G2/M phase arrest. Conclusion : These results suggest that WS inhibits HepG2 cell proliferation not by the gene regulation but by G2/M phase arrest in the cell cycle. Thus further studies on the effect of WS in G2/M phase regulation are thought to be needed.

  • PDF

Modeling of Hydrogen Recirculation System for Fuel Cell Vehicle (수소 연료전지차의 재순환시스템 모델링 연구)

  • Kim, Jae-Hoon;Noh, Young-Gyu;Jeon, Ui-Sik;Lee, Jong-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.481-487
    • /
    • 2011
  • A fuel cell vehicle using a polymer electrolyte membrane fuel cell (PEM FC) as power source produces electric power by consuming the fuel, hydrogen. The unconsumed hydrogen is recirculated and reused to gain higer stack efficiency and to maintain the humidity in the anode side of the stack. So it is needed considering fuel efficiency to recirculated hydrogen. In this study, the indirect hydrogen recirculation flow rate measurement method for fuel cell vehicle is presented. By modeling of a convergent nozzle ejector and a hydrogen recirculation blower for the hydrogen recirculation of a PEM FC, the hydrogen recirculation flow rate was calculated by means of the mass balance and heat balance at Anode In/Outlet.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell (PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Experimental Study of Natural Convection Due to Combined Buoyancy in a Rectangular Enclosure (직각 밀폐용기내의 복합부력에 의한 자연대류에 관한 실험적 연구)

  • 이진호;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 1986
  • An experimental investigation was conducted to study natural convection due to temperature and concentration differences between the two opposite end walls of a rectangular enclosure of aspect ratio 0.2. Flow motion in the enclosure appears as a uni-cell flow pattern for the relatively lower concentration and higher temperature differences and vice versa, while it appears as a multicell flow pattern for the comparable temperature and concentration differences. In the multi-cell flow regime, when the cellular flow motiion is very slow, vertical temperature differences within the cells are negligible while the vertical concentration differences are large. In addition, both the temperature and concentration differences are negligible across the interface between the slowly moving cells. For the fast moving cellular flow motion, on thel contrary, vertical temperature differences within the cells are large while the vertical concentration differences are negligible. In this case, temperature differences are negligible and the concentration differences are large across the interface between the fase moving cells.

Effect of hematocrit on hemorheological characteristics of blood flow in a microtube (헤마토크릿에 따른 혈액의 유변학적 특성 변화)

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

Effects of Dimension, Density and Arrangement of the Unit Cell of the TPMS on Contact and Flow Areas of Combined TPMS Structures (TPMS 단위체의 크기, 밀도 및 배치가 혼합형 TPMS 구조의 접촉 및 유동 면적에 미치는 영향)

  • K. K. Lee;H. Kim;D. G. Ahn
    • Transactions of Materials Processing
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2024
  • The triply periodic minimal surface (TPMS) structure is characterized by a high surface-to-volume (S/V) ratio and the separated internal structure for flow. Combining the different TPMS structures can provide unique flow and strength characteristics. This paper investigates the effects of dimension, density and arrangement of the unit cell of the TPMS on contact and flow areas of combined TPMS structures. Several representative TPMS structures, including primitive, gyroid and diamond structures, are adopted to design gradient and heterogeneous types TPMS structures. The estimation method of contact and flow areas using an image processing technique is proposed. Python software is used to predict contact and flow area. The influence of the combination method of TPMS on contact and flow areas in the contact surface of combined TPMS structures with different shapes is investigated. Based on the results of the investigation, an appropriate combination method of TPMS structures is discussed.

CHANGE OF BLOOD VISCOSITY AND DEFORMABILITY IN ORAL SQUAMOUS CELL CARCINOMA PATIENTS (구강편평세포암종 환자에서의 혈액 점도와 혈액 변형성 변화에 대한 연구)

  • Yun, Pil-Young;Myoung, Hoon;Lee, Jong-Ho;Choung, Pill-Hoon;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.3
    • /
    • pp.181-185
    • /
    • 2004
  • Malignant tumor have hypoxic cell fraction, which makes radio-resistant and hypoxia in tumor is a result from the blood flow decrease caused by increase in blood flow resistance. Blood viscosity increase is major factor of increased blood flow resistance and it could be attributed to the decrease in blood deformability index. For the evaluation of the change of blood viscosity and blood deformability in oral squamous cell carcinoma, we perform the test of the change of those factors between the normal control group and oral squamous cell carcinoma cell patient group. Relative viscosity measured against distilled water was $5.25{\pm}0.14$ for normal control group, and $5.78{\pm}0.26$ for the SCC patient group and there was statistical significance between the groups. However, there was no significant difference between the groups in blood viscosity between the groups by tumor size (T1+T2 vs T3+T4). Also, there was no significant difference between the normal control group and SCC patient group in blood deformability index and between the groups by tumor size (T1+T2 vs T3+T4). Increase in blood viscosity was confirmed with this study and it can be postulated that modification blood viscosity might contribute to decrease of hypoxia fraction in oral squamous cell carcinoma, thus improve the effect of radiotherapy and it can be assumed that the main factor of blood viscosity increase is not decrease of blood deformability in oral squamous cell carcinoma.

Apoptosis and Cell Cycle Arrest in Two Human Breast Cancer Cell Lines by Dieckol Isolated from Ecklonia cava

  • You, Sun Hyong;Kim, Jeong-Soo;Kim, Yong-Seok
    • Journal of Breast Disease
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 2018
  • Purpose: Dieckol, a phlorotannin compound isolated from Ecklonia cava, has been reported to have antioxidant, antiviral, anti-inflammatory, and anticancer properties. The purpose of this study was to investigate its anticancer effects on human breast cancer cell lines. Methods: In this study, the viability of two human breast cancer cell lines SK-BR-3 and MCF-7 was investigated after dieckol treatment using a WST-1 assay. Apoptosis and cell cycle distribution were assayed via Annexin V-fluorescein isothiocyanate and propidium iodide staining followed by flow cytometric analysis. Immunoblotting analysis was also performed using Bax/Bcl-2 to determine whether the dieckol-induced apoptosis was mediated by the intrinsic apoptotic pathway. Results: In a dose dependent manner, dieckol reduced the number of viable cells and increased the number of apoptotic cells. The effect of dieckol on the cell cycle distribution was analyzed using flow cytometry. Dieckol treatment significantly increased the percentage of MCF-7 and SK-BR-3 in the G2/M phase. Immunoblot analysis revealed that 24 hours of dieckol exposure increased the Bax/Bcl-2 ratio. Conclusion: Dieckol induced cytotoxicity in MCF-7 and SK-BR-3 human breast cancer cells inducing apoptosis and cell cycle arrest. Therefore, it is suggested that dieckol may be a potential therapeutic agent for breast cancer.

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증-)

  • Kim, Min-Su;Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.