• Title/Summary/Keyword: flow Interaction

Search Result 1,956, Processing Time 0.03 seconds

Numerical analysis of the 3D fluid-structure interaction in the sac of artificial heart (인공심장 sac내의 3차원 유체-구조물 상호작용에 대한 수치적 연구)

  • Park M. S.;Shim E. B.;Ko H. J.;Park C. Y.;Min B. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.27-32
    • /
    • 2000
  • In this study, the three-dimensional blood flow within the sac of KTAH(Korean artificial heart) is simulated using fluid-structure interaction model. The numerical method employed in this study is the finite element commercial package ADINA. The thrombus formation is one of the most critical problems in KTAH. High fluid shear stress or stagnated flow are believed to be the main causes of these disastrous phenomenon. We solved the fluid-structure interaction between the 3D blood flow in the sac and the surrounding sac material. The sac material is assumed as linear elastic material and the blood as incompressible viscous fluid. Numerical solutions show that high shear stress region and stagnated flow are found near the upper part of the sac and near the comer of the outlet during diastole stage.

  • PDF

Numerical simulation of unsteady propeller/rudder interaction

  • He, Lei;Kinnas, Spyros A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.677-692
    • /
    • 2017
  • A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

Numerical simulation of deformable structure interaction with two-phase compressible flow using FVM-FEM coupling (FVM-FEM 결합 기법을 이용한 압축성 이상 유동과 변형 가능한 구조물의 상호작용 수치해석)

  • Moon, Jihoo;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • We conduct numerical simulations of the interaction of a deformable structure with two-phase compressible flow. The finite volume method (FVM) is used to simulate fluid phenomena including a shock wave, a gas bubble, and the deformation of free surface. The deformation of a floating structure is computed with the finite element method (FEM). The compressible two-phase volume of fluid (VOF) method is used for the generation and development of a cavitation bubble, and the immersed boundary method (IBM) is used to impose the effect of the structure on the fluid domain. The result of the simulation shows the generation of a shock wave, and the expansion of the bubble. Also, the deformation of the structure due to the hydrodynamic loading by the explosion is identified.

Vortex Interaction Characteristics of a Delta Wing/LEX (삼각날개/LEX에서의 와류 상호작용 특성)

  • 이기영;손명환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.77-86
    • /
    • 2002
  • An experimental study of the vortex interaction characteristics of a delta wing/LEX configuration was conducted in a wind tunnel using the micro water droplet and laser beam sheet visualization technique. The main focus of this study was to analyze the effect of the angle of attack and sideslip angle on the vortex interaction and vortex breakdown. These tests were accomplished at angles of attack between $16^{\circ}$ and $28^{\circ}$ and sideslip angle between $0^{\circ}$ and $-15^{\circ}$ at free-stream velocity of 6.2 m/s. Flow visualization data provide a description of the vortex interaction between LEX and wing vortices, and of the vortex breakdown. The introduction of LEX vortex stabilized the vortical flow, and delayed the vortex breakdown up to higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas they are suppressed on the leeward side.

Numerical Study on the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve and Leaflet Behavior Using Fluid-Structure Interaction (FSI) Technique (유체-고체 상호작용 (FSI)기법을 이용한 이엽기계식 인공심장판막을 지나는 혈액유동과 판첨거동에 관한 수치해석적 연구)

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.14-22
    • /
    • 2004
  • Bileaflet mechanical valves have the complications such as hemolysis and thromboembolism, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. The first aim of the current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of the previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. A finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. As a result, it is observed that the leaflet is closing very slowly at the first stage of processing but it goes too fast at the last stage. And the results noted that the low pressure is formed behind leaflet to make the cavitation because of closing velocity three times faster than opening velocity. Also it is observed some fluttering phenomenon when the leaflet is completely opened. And the rebounce phenomenon due to the sudden pressure change of before and after the leaflet just before closing completely. The some of time-delay is presented between the inversion point of ventricle and aorta pressure and closing point of leaflet. The shear stress is bigger and the time of exposure is longer when the flow rate is maximum. So it is concluded that the distribution of shear stress at complete opening stage has big effect on the blood damage, and that the low-pressure region appeared behind leaflet at complete closing stage has also effect on the blood damage.

The Impact of Interactivity in Smart Signage and Flow on the Engagement and Memory Accessibility (스마트 사이니지의 상호작용성과 플로우(Flow)가 인게이지먼트와 기억 접근성에 미치는 영향)

  • Han, Kwang-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.171-176
    • /
    • 2018
  • The purpose of this study is to establish smart signage in a certain space and to analyze not only media ingestion and advertising inducement as well as any information (high vs. low vs. low) and flow level And the memory effect related to whether or not to remember. The results of this study show that the higher the interaction level and the higher the engagement level, the higher the advertising engagement is. In addition, media involvement was high when interaction level was low and flow level was high. Finally, if the level of interactivity is low and the level of flow is high, then non - valued attribution information is more likely to be recalled than the comprehensive evaluation information. If the interaction of smart signage is high and the flow of users is low, Recalled more recall information. In the future, detailed strategies for enhancing user flow will be needed rather than a strategy for unconditional enhancement of interaction in smart signage strategy.

A Study on the Effect of the Interaction and Flow of Consumers within the Company SNS on the Consumers' Affection (기업 SNS 내 소비자의 상호작용과 몰입이 소비자의 애착에 미치는 영향에 관한 연구)

  • Kim, Han-Joo
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.231-250
    • /
    • 2015
  • This study is about the effect of interaction and flow of consumers within the company SNS on the consumers' affection. Verification took place through empirical analysis based on the theoretical background. The following is the summary of the research results generated based on the research results. First, correlation between aspect of the motivation for the use of contents and interactivity is as follows. Mutual sense of solidarity (Hypothesis 1-1), influence (Hypothesis 1-2), connectivity (Hypothesis 1-3) and reactivity (Hypothesis 1-4) exerted positive(+) on the interaction. Second, correlation between aspect of the motivation for the use of contents and flow is as follows. Mutual sense of solidarity (Hypothesis 2-1), influence (Hypothesis 2-2) and connectivity (Hypothesis 2-3) exerted positive(+) effect on immersion. Meanwhile, reactivity (Hypothesis 1-4) was not statistically significant when it comes to flow. Third, interaction between contents characteristics and interaction exerted positive(+) positive on the interactivity of entertainingness (Hypothesis 3-1) and informativity (Hypothesis 3-2). Fourth, correlation between contents characteristics and flow was examined, which demonstrated that only informativity (Hypothesis 4-2) exerted positive(+) effect on the immersion. Meanwhile, entertainingness was not statistically significant when it comes to the immersion. Lastly, correlation between interaction, flow and affection is as follows. Correlation between interactivity and flow(Hypothesis 5) was not statistically significant while interactivity(Hypothesis 6) and Flow(Hypothesis 7) exerted positive(+) effect on the affection. This study presents diverse implications and significances to the working level people who use the company SNS based on these results.

  • PDF

A Study on the Factors Affecting Flow in e-Learning Environment - Focusing on Interaction Factors and Affordance - (이러닝 환경에서 몰입에 영향을 미치는 요인 연구 -상호작용 요인과 어포던스 요인을 중심으로-)

  • Lee, So-Young;Kim, Hyung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.522-534
    • /
    • 2019
  • The purpose of this study is to investigate the interaction factors(learning motivation, concrete feedback, learner's control) and affordance factors (aesthetics, playfulness, stability) that influence flow in e - learning. This study collected 236 survey data from e-learning users. The data was analyzed the statistical relationships among the variables using the SPSS21 and AMOS21. The measurement model was reliable and valid, and the structual model was good. The result shows that interaction factors (concrete feedback, learner's control) and affordance factor (playfulness) influence on flow. Flow has a significant effect on satisfaction. Especially the effect of playfulness on flow is meaningful. Playfulness is one of the most important factors leading to the flow state of humans. The contribution of this study is to find the factors influencing flow in the interaction between learners and computer in e-learning. It can be used to provide an entertainment experience that can enhance the satisfaction of consumers in the Internet environment by finding the antecedents that affect the flow in computer - human interaction.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow- (정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II))

  • Kang, Dong-Jin;Lakshminarayana, Budugur
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.