• Title/Summary/Keyword: floating mortar

Search Result 9, Processing Time 0.022 seconds

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Characteristics of the floor impact sound by water to binder ratio of mortar (마감모르타르 물결합재비에 따른 바닥충격음 특성 변화)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • The present study aims to investigate the influence of the water to binder ratio of finishing mortar on the floor impact sound of apartments. For this, same resilient materials Expanded Polystyrene (EPS) with constant dynamic stiffness and different mortar layers with 52 %, 66 % and 72 % water to binder ratio respectively were used to build floating floor structures on which floor impact sounds were measured in standard testing facilities. As a result, it was found that light-weight floor impact sound was transmitted well when the water to binder ratio was 52% due to the high density. In case of heavy-weight floor impact sounds, since water to binder ratio of finishing mortar becomes higher as the weight of upper layer of resilient material lighter, it was shown that the natural frequency of floating floor structure moves to 63 Hz bandwidth which eventually cause a higher sound pressure level of floor impact sound. Thus, effect of water to binder ratio of mortar on the heavy-weight floor impact sounds was investigated.

Floor Impact Noise Level for Concrete Slab Integrated with Floor Finishing Layers (콘크리트 슬래브와 바닥 상부구조가 일체된 바닥구조의 바닥충격음)

  • Mun, Dae Ho;Oh, Yang Ki;Jeong, Gab Cheol;Park, Hong Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.130-140
    • /
    • 2016
  • Floating floor is most commonly used at apartment houses in Korea for thermal insulation and reducing impact noise. But it in proven that the floating floor is not effective for reducing the floor impact noise in low frequency range. In most cases, impact sound pressure level under 63 Hz frequency band were actually increased by the resonance of resilient material, lightweight concrete and the finishing mortar installed on it. In this paper, an integrated floor system consist of 70 mm light weight concrete and 40 mm finishing mortar successively installed on the concrete slab was suggested to avoid the resonance. Integrated floor system increases total flexural stiffness and mass per unit area. The natural frequencies of first and second vibration mode were increased and acceleration response and floor impact sound level was decreased in all measurement range.

Evaluation of Cracking Strength of Floating Floor System (뜬바닥구조의 균열강도 평가)

  • Lee, Jung-Yoon;Lee, Bum-Sik;Jun, Myoung-Hoon;Kim, Jong-Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper reports the test results of the floating floor system used to reduce the floor noise of apartment buildings. Recently, many soft resilient materials placing between the reinforced concrete slab and finishing mortar are used. The resilient material should not only reduce the floor impact sound vibration from the floor but also support the load on the floor. Thus, even if soft resilient materials satisfy the maximum limitation of light-weight impact sound and heavy-weight impact sound, these materials may not support the load on the floor. The experimental program involved conducting sixteen sound insulation floating floor specimens. Three main parameters were considered in the experimental investigation: resilient materials, loading location, and layers of floor. Experimental results indicated that the stiffness of resilient material significantly influenced on the structural behavior of floating floor system. In addition, the deflection of the floating concrete floor loaded at the side or coner of the specimen was greater than that of the floor loaded at the center of the specimen. However, the aerated concrete did not effect on the cracking strength of floating floor system.

Bond Strength Test According to height of foot of Tile (타일 뒷발 높이에 따른 부착강도 실험)

  • Kim, Bum Soo;Seo, Hyun Jae;Choi, Eun Gyu;Lee, Jung Hun;Song, Je Young;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.283-284
    • /
    • 2018
  • The rear side surface of tiles act have protrusions that helps secure the adhesion between the tile and the mortar for tile setting. Conventional height of the rear side usually ranges between 1 to 1.5 mm, and the molding method is classified in between press type and compression type during the manufacturing process, with most tiles being produced by the former method. In sites where adhesion failures were observed, tiles were taken to examine the cause of defect. It was determined that height was irregular at the rear side surface. Based on these findings, an experiment was conducted to determine the correlation between the rear surface and the bonding strength of tiles.

  • PDF

Tile Adhesion Strength Change Testing based on Different Concrete Additive Agents (콘크리트 혼화재료 사용에 따른 타일 부착안정성 실험적 연구)

  • Kim, Bum Soo;Seo, Hyun Jae;Choi, Eun Gyu;Lee, Jung Hun;Song, Je Young;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.165-166
    • /
    • 2017
  • The purpose of this study is to investigate the effect of tile adhesion failure due to weak adhesion with concrete admixture (FA, SP) on walls. The test specimens were divided into four types : (1) OPC 100% (2) OPC 80%+FA 20% (3) OPC 80%+SP 20% (4) OPC 60%+SP 40%, each adhered on a 650 × 650mm wall with 200mm thickness capable of attaching two insulation tiles (300 × 600mm). The tests were carried out on the four types of walls by mortar bedding application method, and after 4 weeks of curing period, adhesion strength test was carried out. The adhesion strength difference was investigated between the concrete wall with added admixture (FA, SP) and general concrete wall.

  • PDF

Adhesion Strength Properties of Tile Modules Exposed to Freeze-Thaw Environment (동결융해 환경에 노출된 타일 모듈의 부착강도 특성)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Choi, Byung-Cheol;Kim, Moon-Kyu;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.217-218
    • /
    • 2023
  • In modern architecture, tiles are used as a decorative material to enhance the appearance of buildings. However, defects occurring during tile installation affect not only the appearance of the building, but also its maintenance. This study aims to investigate stable tile installation by producing tile modules using the floating mortar method and conducting freeze-thaw tests to measure their adhesion strength. Test results showed that the adhesion strength increased as the mesh size decreased, except for S3 mesh. This study highlights the importance of research on tile installation to solve problems related to building appearance and maintenance.

  • PDF

Evaluation on Expectation of Deflection of Floor Damping Materials Subjected to Long-Term Load (장기하중을 받는 바닥완충재의 처짐 예측 평가)

  • Kim, Jung-Min;Hong, Yoon-Ki;Kim, Jin-Koo;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.19-26
    • /
    • 2016
  • Floor damping materials used in floating floor system to diminish the floor noise have been made with low density and dynamic stiffness. Owing to this low density and dynamic stiffness, the deflection in these materials under long-term loading and cracking of the floor finishing mortar in the floating floor system may occur. This paper presents the results of long-term loading effects on the deflection of different types of floor damping materials. The experimental program involved the long-term loading tests for 490 days loading period on sixteen specimens. Specimens were classified as DM1(Damping Materials) to DM8, depending upon the four main parameters; types, bottom shapes and densities of floor damping materials and amount of loading. Results indicated that the long-term deflection of all specimens of damping materials remained unchanged after 200 days at all loading amounts, except the specimens made up of Polystrene, in which long-term deflection remained unchanged after 160 days at 250 N load and 100 days 500 N load. In this paper, two types of correlation expressions were shown in the deflection range prior to the range where deflection remained constant; two analyses by ISO 20392 and linear regression. In comparison of two analyses and experimental results on the difference of deflection of 16 specimens, the difference of deflection was below 0.4 mm in those analyses in case of that total deflection was below 10 mm. Restrictively, it was judged that the analysis for the deflection of specimens made up of Polystrene is more appropriate using ISO 20392.