• Title/Summary/Keyword: flight quality

Search Result 329, Processing Time 0.028 seconds

Reliability estimation and ratio distribution in a general exponential distribution

  • Lee, Chang-Soo;Moon, Yeung-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.623-632
    • /
    • 2014
  • We shall consider the estimation for the parameter and the right tail probability in a general exponential distribution. We also shall consider the estimation of the reliability P(X < Y ) and the skewness trends of the density function of the ratio X=(X+Y) for two independent general exponential variables each having different shape parameters and known scale parameter. We then shall consider the estimation of the failure rate average and the hazard function for a general exponential variable having the density function with the unknown shape and known scale parameters, and for a bivariate density induced by the general exponential density.

Developement of Ultrasonic Handy Scanner for Welding Inspection (초음파를 이용한 용접부 핸디 스캔 검사기 개발)

  • Kang, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.14-18
    • /
    • 2005
  • The ultrasonic handy scanner to be developed in this research is a nondestructive inspection equipment with various facility. The ultrasonic inspection is the technique area which apply range is increasing greatly with IT. The purpose of this research is development of a ultrasonic handy scan inspection device with the utility in a work spot. The ultrasonic handy scanner to be developed with portability in this research is able to carry out the spot inspection. It can contribute to the quality improvement, cost reduction and safety design.

A Robust Depth Map Upsampling Against Camera Calibration Errors (카메라 보정 오류에 강건한 깊이맵 업샘플링 기술)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.8-17
    • /
    • 2011
  • Recently, fusion camera systems that consist of depth sensors and color cameras have been widely developed with the advent of a new type of sensor, time-of-flight (TOF) depth sensor. The physical limitation of depth sensors usually generates low resolution images compared to corresponding color images. Therefore, the pre-processing module, such as camera calibration, three dimensional warping, and hole filling, is necessary to generate the high resolution depth map that is placed in the image plane of the color image. However, the result of the pre-processing step is usually inaccurate due to errors from the camera calibration and the depth measurement. Therefore, in this paper, we present a depth map upsampling method robust these errors. First, the confidence of the measured depth value is estimated by the interrelation between the color image and the pre-upsampled depth map. Then, the detailed depth map can be generated by the modified kernel regression method which exclude depth values having low confidence. Our proposed algorithm guarantees the high quality result in the presence of the camera calibration errors. Experimental comparison with other data fusion techniques shows the superiority of our proposed method.

Accuracy Assessment of Parcel Boundary Surveying with a Fixed-wing UAV versus Rotary-wing UAV (고정익 UAV와 회전익 UAV에 의한 농경지 필지경계 측량의 정확도 평가)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • UAVs (Unmanned Aerial Vehicle) are generally classified into fixed-wing and rotary-wing type, and both have very different flight characteristics each other during photographing. These can greatly effect on the quality of images and their productions. In this paper, the change of the camera rotation angle at the moment of photographing was compared and analyzed by calculating orientation angles of each image taken by both types of payload. Study materials were acquired at an altitude of 130m and 260m with fixed-wing, and at an altitude of 130m with rotary-wing UAV over an agricultural land. In addition, an accuracy comparison of boundary surveying methods between UAV photogrammetry and terrestrial cadastral surveying was conducted in two parcels of the study area. The study results are summarized as follows. The differences at rotation angles of images acquired with between two types of UAVs at the same flight height of 130m were significantly very large. On the other hand, the distance errors of parcel boundary surveying were not significant between them, but almost the same, about within ${\pm}0.075m$ in RMSE (Root Mean Square Error). The accuracy of boundary surveying with a fixed-wing UAV at 260m altitude was quite variable, $0.099{\sim}0.136m$ in RMSE. In addition, the error of area extracted from UAV-orthoimages was less than 0.2% compared with the results of the cadastral survey in the same two parcels used for the boundary surveying, In conclusion, UAV photogrammetry can be highly utilized in the field of cadastral surveying.

Multi-view Generation using High Resolution Stereoscopic Cameras and a Low Resolution Time-of-Flight Camera (고해상도 스테레오 카메라와 저해상도 깊이 카메라를 이용한 다시점 영상 생성)

  • Lee, Cheon;Song, Hyok;Choi, Byeong-Ho;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.239-249
    • /
    • 2012
  • Recently, the virtual view generation method using depth data is employed to support the advanced stereoscopic and auto-stereoscopic displays. Although depth data is invisible to user at 3D video rendering, its accuracy is very important since it determines the quality of generated virtual view image. Many works are related to such depth enhancement exploiting a time-of-flight (TOF) camera. In this paper, we propose a fast 3D scene capturing system using one TOF camera at center and two high-resolution cameras at both sides. Since we need two depth data for both color cameras, we obtain two views' depth data from the center using the 3D warping technique. Holes in warped depth maps are filled by referring to the surrounded background depth values. In order to reduce mismatches of object boundaries between the depth and color images, we used the joint bilateral filter on the warped depth data. Finally, using two color images and depth maps, we generated 10 additional intermediate images. To realize fast capturing system, we implemented the proposed system using multi-threading technique. Experimental results show that the proposed capturing system captured two viewpoints' color and depth videos in real-time and generated 10 additional views at 7 fps.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Verification of Spatial Resolution in DMC Imagery using Bar Target (Bar 타겟을 이용한 DMC 영상의 공간해상력 검증)

  • Lee, Tae Yun;Lee, Jae One;Yun, Bu Yeol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.485-492
    • /
    • 2012
  • Today, a digital airborne imaging sensor plays an important role in construction of the numerous National Spatial Data Infrastructure. However, an appropriate quality assesment procedure for the acquired digital images should be preceded to make them useful data with high precision and reliability. A lot of studies therefore have been conducted in attempt to assess quality of digital images at home and abroad. In this regard, many test fields have been already established and operated to calibrate digital photogrammetric airborne imaging systems in Europe and America. These test fields contain not only GCPs(Ground Control Points) to test geometric performance of a digital camera but also various types of targets to evaluate its spatial and radiometric resolution. The purpose of this paper is to present a method to verify the spatial resolution of the Intergraph DMC digital camera and its results based on an experimental field testing. In field test, a simple bar target to be easily identified in image is used to check the spatial resolution. Images, theoretically designed to 12cm GSD(Ground Sample Distance), were used to calculate the actual resolution for all sub-images and virtual images in flight direction as well as in cross flight direction. The results showed that the actual image resolution was about 0.6cm worse than theoretically expected resolution. In addition, the greatest difference of 1.5cm between them was found in the image of block edge.

Analysis of Spatial Resolution Characteristics for DMC/UlatraCamXp/ADS80 Digital Aerial Image Based on Visual Method (시각적 기법에 의한 DMC/UlatraCamXp/ADS80 디지털 항공영상의 공간해상도 특성 분석)

  • Lee, Tae Yun;Lee, Jae One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • Digital aerial images have been commonly used in a large scale map production owing to their excellent geometry, and high spatial and radiometric resolution in recent years. However, a quality verification process for acquired images should be preceded in order to secure the high precision and reliability of produced results. Several experimental studies to verify digital imaging systems have been vigorously researched by constructing permanent test field in abroad. On the other hand, it is urgently necessary to suggest a practical scheme for an image quality verification, because this related study and experiment are still in its early stage at home. Hence, this study aims to present an easy method to measure the spatial resolution of the image in a visual way using a portable Siemens star. The images used in the study were obtained with three different cameras, two frame array sensors of DMC, UltraCamXp and a linear array sensor of ADS80. The Siemens star target appeared in every image is extracted and then the spatial resolution of image is compared with theoretical GSD(Ground Sample Distance) by a visual method. In addition, the change of spatial resolution depending on the location of the Siemens star from image center and flight direction and cross-flight direction is also compared and analyzed. As study results, while the theoretical GSDs of images taken with each camera are about 6~9cm, the visual resolutions are 1.2~1.3 times as great as the theoretical ones.

The Research Trend of Asian Dust Storm (AD) of Korea and Recent Episode Analysis (황사의 국내 연구동향과 최근 에피소드 분석)

  • Park, Jin Soo;Han, Jin Seok;Ahn, Joon Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.553-573
    • /
    • 2013
  • This paper aims to give a summary and review of the research trend about subjects of Asian Dust (AD) storm in the last three decades. The AD research was focused on classification of synoptic scale data and finding inflow pathway in early stage. Recently, new approaches have been made to explain chemical composition, transportation, transboundary movement reaction of AD, using satellite data, 3D modeling, the aerosol time of flight mass spectroscopy, etc. During AD events, a large amount of dust particles flow into Korea and Japan from AD source areas, and they are highly likely to be mixed with toxic substances when air mass contained AD particles pass over seriously polluted areas. We concluded that, considering that AD events were classified into two cases according to the source area and pathway, the concentrations of crustal components did not increase at the initial stage of AD events, Whereas ammonium-sulfate, trace metal element, OC, EC relatively increased in the early stage. This explains AD events have the possibility of being accompanied with polluted air mass or particles. Also, we further need to compare and summarize the results of AD studies which already have been conducted, and prepare strategies for particle management, particularly for Black Carbon (BC) and Brown Carbon (BrC) which are considered to induce climate change effects.

Study on relationship between the Wirecutter Length and the Control Input of Rotorcraft (회전익 항공기의 전선절단기 길이와 조종입력의 상호관계 연구)

  • Kim, Young-Jin;Lee, Seung-Jae;Chang, In-ki;Shim, Dai-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.46-53
    • /
    • 2017
  • This paper shows a length of wirecutter using an analysis based on Rotorcraft's control input and taxiing speed. In case of selecting an inappropriate length of wirecutter which applies to rotorcraft for safety, this causes a collision between blade and wirecuter, or an accident by wire. We review the control input which was used in development stage, and establish the conditions of control input which are needed in taxiing. Based on these conditions, we review the collision possibility between blade and wirecutter through analysis in case of 20, 40, 60 kts taxiing speed. Following, this result is verified by comparison with that of a simulation test in rotorcarft. Finally, in case of high collision possibility, we presented the downsize length to avoid the collision and increment of non-protective area in flight, simultaneously.