• 제목/요약/키워드: flexural load

검색결과 1,218건 처리시간 0.027초

Effect of the crude oil environment on the electrical conductivity of the epoxy nanocomposites

  • Seyed Morteza Razavi;Soroush Azhdari;Fathollah Taheri-Behrooz
    • Advances in nano research
    • /
    • 제15권4호
    • /
    • pp.285-294
    • /
    • 2023
  • This study is aimed to investigate the electrically conductive properties of epoxy nanocomposites exposed to an acidic environment under various mechanical loads. For simultaneous assessment of the acidic environment and mechanical load on the electrical conductivity of the samples, the samples with and without carbon nanotubes were exposed to the acidic environment under three different loading conditions for 20 days. Then, the aged samples' strength and flexural stiffness degradation under crude oil and bending stress were measured using a three-point flexural test. The aged samples in the acidic environment and under 80 percent of their intact ultimate strength revealed a 9% and 26% reduction of their electrical conductivity for samples with and without CNTs, respectively. The presence of nanoparticles declined flexural stiffness by about 16.39%. Scanning electron microscopy (SEM) images of the specimen were used to evaluate the dispersion quality of CNTs. The results of this study can be exploited in constructing conductive composite electrodes to be used in petroleum environments such as crude oil electrostatic tanks.

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Arass Omer Mawlod;Dillshad Khidhir Hamad Amen Bzeni
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.47-59
    • /
    • 2024
  • In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.

구조용 합성섬유의 형상 및 단면적 변호에 따른 부착 및 휨 성능 (Pullout and Flexural Performance of Structural Synthetic Fibers by Geometry and Sectional Area Change)

  • 원종필;백철우;박찬기;한일영;김방래
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.643-649
    • /
    • 2003
  • 본 연구의 목적은 부착실험 및 휨실험을 실시하여 구조용 합성섬유의 단면적 및 표면형상의 변화에 따른 부착성능과 휨성능을 평가하는 것이다. 6가지 다른 형상의 구조용 합성섬유를 조사하였고 부착 및 휨실험을 수행하였다. 6가지 형상의 구조용 합성섬유를 조사하였고 휨시험과 부착시험을 실시하였다. 실험변수는 3가지 종류의 형상과 2가지 종류의 단면적 변화로 하였다. 실험결과 구조용 합성섬유의 단면적이 동일할 때 주기 및 높이가 증가할수록 부착하중 및 인발 파괴 에너지는 감소하고 휨강도는 증가하였다. 또한 주기 및 높이가 일정할 섬유의 단면적이 증가할수록 인발하중과 인발 파괴 에너지는 증가하였고 휨강도는 감소하였다. 실험결과를 기본으로하여 콘크리트의 구조성능은 섬유의 부착성능 뿐만 아니라 콘크리트에 혼입되어 있는 섬유의 수, 인장하중에 저항할 수 있는 섬유의 재료특성 등에 복합적으로 영향을 받는 다는 것을 알 수 있었다.

종이성형구조물의 휨강성에 대한 실험적 연구 (Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure)

  • 박종민;이명훈
    • 한국포장학회지
    • /
    • 제5권2호
    • /
    • pp.17-23
    • /
    • 1999
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was rallied out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiber-boards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

Perfobond Rib 전단연결재를 사용한 실험체의 전단강도 분석 (Analysis on Shear Force of Specimens Using Perfobond Rib Shear Connector)

  • 최진웅;박병건;김형준;정호성;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.138-147
    • /
    • 2011
  • 본 연구의 목적은 직접전단응력 및 휨 전단응력의 비교분석을 통하여 Perfobond Rib 전단연결재를 사용한 구조물의 하중방향에 따른 전단응력 분석이다. 직접전단응력 분석을 위해서 5개의 변수로 Perfobond Rib 전단연결재 실험체 5개를 제작하고 Push-out Test를 실시하였다. 실험 후 Perfobond Rib 전단연결재의 전단저항 메커니즘을 규명하고, 직접전단응력에 영향을 미치는 주요 인자를 바탕으로 직접전단력을 산출할 수 있는 제안식을 제시하였다. 또한 휨 전단응력의 분석을 위해 강-콘크리트 합성 바닥판 실험체를 제작하고 정적 휨실험을 실시하였다. 정적 휨실험을 바탕으로 휨 거동특성을 분석하고 휨 전단응력을 계산하였다. 직접전단응력과 EN 1994-1-1을 통해 계산된 휨 전단응력을 비교하여 하중방향에 따른 전단저항응력에 대해서 분석을 하였다.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동에 관한 실험적 연구 (An Experimental Study on Shear Behavior of Polymer-Steel Fibrous High Strength Concrete Beams)

  • 곽계환;조선정;김원태;조한용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.601-608
    • /
    • 2000
  • Steel fiber and Polymer are used widely for the reinforcement material of RC structures because of its excellence of durability, serviceability as well as mechanical properties. Polymer-Steel fibrous high strength concrete beam's input ratio are 1.0%. The shear span-to-depth ratio are 1.5, 2.8 and 3.6, compressive strength of specimens 320kg/㎠, 436kgf/㎠ and 520kgf/㎠ in 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural crack and of diagonal crack, from which crack patte군 and fracture modes are earned. Also, stress-strain, load-strain and load-deflection are examined during the test cracks(shear crack, flexural crack, and diagonal tension crack), when the load values are sketched according to the growth of crack. Result are as follows; (1) The failure modes of the specimens increase in rigidity and durability in accordance with the increase of mixing steel fiber and polymer. (2) The load of initial crack was the same as the theory of shear-crack strength (3) Polymer-Steel fibrous high strength concrete beams have increased the deflection and strain at failure load, improving the brittleness of the high strength concrete. (4) In this result of study, an additional study need to make a need formular because the study is different from ACI formular and Zsutty formular.

  • PDF

편심하중이 작용하는 제형 다실박스거더에서의 거동분리연구 (A study of decomposition of applied eccentric load for multi-cell trapezoidal box girders)

  • 김승준;한금호;박남회;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.229-234
    • /
    • 2005
  • Thin-walled multicell box girders subjected to an eccentric load can he produced the three global behaviors of flexure, torsion, and distortion. Specially in railway bridges subjected to much eccentric load, it is quite important to evaluate influences of torsion and distortion. But it is very difficult to evaluate each influences of major behaviors numerically. If we can decompose an eccentric load P into flexural, torsional, and distortional forces. we can execute quantitative analysis each influences of major behaviors. Decomposition of Applied Load for Thin-walled Rectangular multi-cell box girders is reserched by Park, Nam- Hoi(Development of a multicell Box Beam Element Including Distortional Degrees of Freedom, 2003). But researches about trapezoidal multi-cell section is insufficient. So, this paper deals with multi-cell trapezoidal box girders. An expanded method, which is based on the force decomposition method for a single cell box girder given by Nakai and Yoo, is developed herein to decompose eccentric load Pinto flexural, torsional, and distortional forces. Derive formulas by decomposition of eccentric load is verified by 3D shell-modelling numerical analysis.

  • PDF

SFRC 보에 대한 System Identification (System Identification on SFRC Beam)

  • 이차돈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.3-7
    • /
    • 1991
  • Considering the relatively large amount of stable flexural teat results available for steel fiber reinforced concrete (SFRC) and their dependency on the constitutive behavior of the material, a technique called “System Identification” is used for interpretating the flexural test data in order to obtain basic information on the tensile constitutive behavior of steel fiber reinforced concrete. “System Identification” was successful in obtaining optimum sets of parameters which provide satisfactory matches between the measured and predicted flexural load-deflection relationships.

  • PDF

실내시험에 의한 새로운 격자지보재의 하중지지력 평가 (Load Bearing Capacity Evaluation of New Lattice Girder by Laboratory Test)

  • 최영남;장연수;김동규;배규진
    • 토지주택연구
    • /
    • 제2권2호
    • /
    • pp.183-188
    • /
    • 2011
  • 최근 건설되는 터널의 심도가 깊어져 난공사 구간이 증가되며, 초장대 터널의 증가로 터널 기술 개발이 필요해지고 있다. 터널의 기술개발의 하나로 터널 강지보재로 사용되는 높이 95mm 격자지보재에 사용되는 스파이더를 최적화하여 U자형과 보강재스파이더를 개발하였다. 개발된 격자지보재의 하중지지력을 평가하기 위하여 국내에서 사용되는 4절점 휨강도 실험을 실시하였으며 실내 실험을 위해 기존 격자지보재와 개발된 격자지보재의 시편을 직선으로 제작하여 실시하였다. 실험 결과 새로운 격자지보재는 기존의 격자지보재에 비하여 하중지지력이 높게 나타났다. 지지력 평가에 의한 시편의 응력-변형 거동을 분석한 결과 기존 격자지보재는 탄소성 거동이 나타났고, 새 격자지보재는 응력연화의 거동이 나타났다. 새 격자지보재는 하중이 가해지는 지점의 위치에 따라 지지력 거동이 달라짐을 알 수 있었다.