• Title/Summary/Keyword: flexural Strength

Search Result 3,365, Processing Time 0.028 seconds

Properties of Alkali-Activated Cement Mortar by Curing Method (양생 방법에 따른 알칼리활성 시멘트 모르타르의 특성)

  • Kim, Ji-Hoon;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Globally, there are environmental problems due to greenhouse gas emissions. $CO_2$ emissions rate of the cement industry is very high, but the continued demand of cement is needed in the future. In this study, in order to reduce the environmental impact of $CO_2$ emissions from cement production. The experiments were carried out for the development of non-sintered cement (have not undergone firing burning) by granulated ground blast furnace slag. In order to compare the characteristics by curing, an experiment was conducted by changing the curing conditions such as atmospheric steam curing, observe the mechanical properties for the measurement of flexural compressive strength by mortar, observe the chemical properties such as acid resistance, $Cl^-$ penetrate resistance and analyzed the mechanism of hydration by XRD, SEM experiments. From the experimental results, as compared with portland cement usually confirm the mechanical and chemical properties excellent, it is expected be possible to apply to the undersea, underwater and underground structures that require superior durability. In addition, based on the excellent compressive strength by steam curing, it is expected to be possible to utilize as a cement replacement material in the secondary product of concrete. In the future, to solve the problem through continued research, it will be expected to reduce the effect of environmental load and to be excellent economics.

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.

Development of Organic Paste Porcelain for Fixed Prostheses (유기조성물을 이용한 페이스트형 일반도재 시스템)

  • Han, Jung-Suk;Lee, Myung-Hyun;Kim, Dae-Hyun;Chung, Hun-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.109-120
    • /
    • 2004
  • INTRODUCTION: The build-up method has been used for application of porcelain powder on the metal framework to make final tooth shape conventionally. This method takes time and need skill to mimic final shade and shape of porcelain fused to metal crown. The purpose of this study was to develop standard shape and shade laminating porcelain forms to reduce build-up time. METHODS: To make tooth form porcelain paste, several liquid organic compounds were added to conventional feldspathic porcelain. The amount of additives and rheologic property were tested to find out best composition. Comparison of mixing methods to reduced porosity, proper heating schedule, and measurement of shrinkage amount and residual organic materials were performed to set-up standard procedures. Finally, biaxial flexural strength and color of preformed laminated paste porcelain were compared with those of porcelain which fabricated by the conventional build-up method. RESULTS: There was no significant difference in physical properties and color stability between two fabrication methods after various testing methods. Conclusion: This new build-up method can be applied to fabricate the PFM crown and bridge without any loss of strength and optical properties.

Evaluation of Environment Friendly High Performance Ternary Cement Concrete Deck Overlay Pavement by Experimental Construction (시험시공을 통한 친환경 고성능 3성분계 시멘트 콘크리트 교면 포장의 성능 평가)

  • Choi, In-Hyeok;Kim, Dae-Seong;Lee, Jun-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 2011
  • This study experimented to evaluate the environment friendly high performance ternary cement concrete deck overlay pavement using mineral admixture such as fly ash and ground granulated blast-furnace slag. It was measured to find best binder mixing according to replacement rate of mineral admixture with compressive strength and flexural strength. After finding best binder, it is also experimented to evaluate durability on chloride penetration resistance, freezing- thawing resistance, scaling resistance of deicing chemicals, abrasion resistance, alkali-silica reactivity test and bonded environment friendly high performance ternary cement concrete deck overlay pavement experimented to evaluate bonded old deck and new concrete overlay pavement using special polymer cement mortar. In additions, bonded environment friendly high performance ternary cement concrete deck overlay pavement by experimental construction was evaluated at interchange bridge of North Yeoju. Result, examination was indicated better binding with binder replacement of cement 70%, ground granulated blast-furnace slag 15% and fly ash 15%. And special polymer cement mortar used in old deck and new overlay concrete was indicated better bonding both laboratory and construction.

Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.249-260
    • /
    • 2017
  • In order to investigate the structural performance of a novel prefabricated-SRC column using bolt-connected steel angles(PSRC column), eccentric axial loading tests were performed for six PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and eccentricity ratio of axial load. The test results showed that, due to high axial-stiffness of the angles located at the corners of the cross section, the compressive load-carrying capacity and deformation capacity of the PSRC specimens were greater than those of the SRC specimens in the large eccentricity ratio of axial load. Closely spaced lateral steel plates and Z-shaped lateral steel plates improved lateral confinement, which increased the load-carrying capacity of the PSRC specimens. The combined flexural and axial load-carrying capacity of the specimens by tests and nonlinear numerical analysis were greater than the predictions by current design codes. The numerical analysis agreed well with the test results including the initial stiffness, peak strength, and post-peak strength degradation.

A Study on the Physical Properties and Permeability of Permaeable Poly Concrete (투수성 폴리머 콘크리트의 물성과 투수성능에 관한 연구)

  • 박응모;조영국;소양섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.213-222
    • /
    • 1998
  • Covering polmer mortar as a filter for permeable polymer concrete on the base polymer concrete is nessary for good permeability from infiltration continuously. Therefore, three covering polymer mortars on the optimum base polymer concrete were cast immediatly following on the casting of the base polymer concrete. They are tested for compressive and flexural strengths, adhesion in tension, hardening shrinkage and permeability, and the effects of the mix proportioning factors on the properties of the permeable polymer concrete are discussed. From the test results, increase in the compressive strength and decrease in the coeffiecient of permeability of base polymer concrete are clearly obserbed with increasing filler-binder ratio. The base polymer concretes having a compressive strength of 9.4~28.3MPa and a coefficient of permeability of 0.12~1.93 cm/s can be produced in the consideration of the mix proportioning factors. Binder and filler contents in mix proportions had a great influence on the permeability of polymer concretes. The mechanical properties of permeable polymer concretes covered with polymer mortar using crushed stone are superior to other filters, and hardening shrinkage is the smallest in filters. It is apparent that adhesion between the base polymer concrete and polymer mortar is affected by the degree of hardening shrinkage. From this study, proper mix proportions can be recommended in the consideration of properties of the permeable polymer concrete.

The Properties of Underwater-Hardening Epoxy Mortar Used the Rapidly Cooled Steel Slag (RCSS) (급냉 제강슬래그를 사용한 수중 경화형 에폭시 모르타르의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Bae, Kee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.549-555
    • /
    • 2007
  • Although blast furnace slag has been widely used in concrete as a cementitious admixture or aggregate for many years, the slowly cooled steel slag is not used in concrete but mainly in road. Its use in concrete operates problem such as the lack of volume stability due to high free CaO content, which can be potentially hazardous in concrete. However, the rapidly cooled steel slag by atomization has a low free CaO content, a high density, and a spherical shape, so it is expected to use in concrete so much. This paper is to understand the probability that the rapid cooled steel slag can replace the silica sand used as aggregate in the epoxy mortar. We did the experimental study on the properties of the epoxy mortar having various replacement proportion of rapidly cooled steel slag. This study shown that increasing content of the rapidly cooled steel slag in epoxy mortar lead to increase largely the passing time of nozzle by O-lot, compressive strength and flexural strength. However except the flow is almost same level. So we understand that the rapidly cooled steel slag has positive effect on increasing of properties in epoxy mortar.

Simple Model for Preliminary Design of Hexagrid Tall Building Structure (헥사그리드 고층건물구조의 예비설계를 위한 단순모델)

  • Lee, Han-Ul;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • High-rise building shapes are changing from orthogonal to irregular form and the current trend is to arrange members in geometric grid-patterns at the perimeter of buildings. This study proposes a simple model for the preliminary design of a hexagrid high-rise building. The size of the cross section is set to be different at each module and hexagrid unit, which is different from the previous studies in which all hexagrid members were the same. To examine the effect of hexagrid size on structural performance, 60-story hexagrid buildings with 1-, 2- and 4-story high modules are designed and analyzed. Maximum lateral displacement, steel tonnage, load carrying percentage of perimeter frame and combined strength ratio are compared for 15 buildings. As the lateral load carrying capacity of hexagrid structure was inferior to a diagrid structural system, proper lateral stiffness should be allocated to the core frame in a hexagrid structure. The best ratio of flexural to shear deformation was 4 and larger unit size was better in considering constructional cost and structural efficiency. As the maximum lateral displacements of the buildings were within 84%~108% of the limit, the proposed method seems to be applicable to preliminary design of hexagrid buildings.

A Study on the Performance Standards for a Natural Type Landscaping Rocks by Utilizing GFRC(Glass Fiber Reinforced Concrete) (유리섬유강화콘크리트를 이용한 자연형 경관석의 성능기준 연구)

  • Yoon, Bok-Mo;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.33-42
    • /
    • 2012
  • This study aims to establish the performance standard for natural type landscape stone GFRC. The required performance such as material performance, structural safety performance, durability performance, and landscape performance were selected through an examination of domestic and overseas performance related references and examples, and through the questionnaires obtained from 40 experts, and the verified items and performance standards were proposed. Among the required performances, the material performance(glass fiber content, air-dried gravity), structural safety performance(flexural strength, compressive strength), durability performance(crack, corrosion resistance), and landscape performance(texture, efflorescence) were selected through the questionnaires obtained from the experts. In the case of material performance and structural safety performance with the corresponding standards that existed, final performance evaluation standard was proposed by conducting a test and comparing it with the existing standard sample, and in the case of durability performance and landscape performance on which standard does not existed, they were verified by measuring directly through field examination of formative landscape items such as artificial waterfall etc. In this study, performance standard for the material on natural type landscaping rocks GFRC and items which can be evaluated after construction such as material performance, structural safety performance, durability performance, landscape performance, and so forth were proposed, however, follow up study for pro-environmental and ecological performance standard which were recently gaining force would be required through a continuous monitoring for the construction samples afterwards.

Effect of Metal Complexes as a Catalyst on Curing Behavior and Mechanical Properties of Silica Filled Epoxy-Anhydride Compounds (촉매로서 금속 착화합물이 실리카가 충전된 에폭시-산무수물 복합체의 경화 거동 및 물성에 미치는 영향)

  • Seo, Byeongho;Lee, Dong-Hoon;Lee, Noori;Do, Kiwon;Ma, Kyungnam;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • In this study, in order to complete curing reaction of the molding compound comprising an epoxy/anhydride at $71^{\circ}C$ for 40 hours, metal coordination complexes such as cobalt (II) acetylacetonate, potassium acetylacetonate, iron (III) acetylacetonate and chromium (III) octoate as a catalyst were applied to the epoxy/anhydride compounds respectively. The weight ratio of an epoxy part/an anhydride part was adjusted to improve the mechanical properties of the molding compound. According to the experimental results, an epoxy/anhydride compound containing chromium (III) octoate showed a high conversion at $71^{\circ}C$ for 40 hours as well as a proper processability at room temperature among the several metal coordination complexes. For the mechanical properties of the cured epoxy/anhydride compound, the compounds containing weight ratio from 0.9/1 to 0.5/1 of the epoxy part/anhydride part with chromium (III) octoate showed the high flexural strength, and higher compressive strength was shown with increasing of the hardener part.