• Title/Summary/Keyword: flexible-use

Search Result 1,168, Processing Time 0.036 seconds

Scalable and Viable Paths to Printed (or Flexible) Electronics

  • Go, Byeong-Cheon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.3.2-3.2
    • /
    • 2009
  • Development of printed electronics, which is occasionally referred to as 'flexible' or 'polymer' electronics, has attracted considerable world wide attention in recent years. Printed (or flexible) electronics is currently expected to represent a new form of electronics and open up wide ranging applications in displays, electron devices for medical use, sensors, and other areas. This presentation aims to provide a strategy for scalable and viable paths to accomplish flexible, printable, large area circuits displaying high performance. Novel approaches evolving from system on package (SoP) to system on flex (SoF) technology will allow the integration of heterogeneous materials platforms into a system which is needed to enhance the functionality of the system. The talk also includes speculations about areas on which future advances in printed electronics could have a substantial impact along with a brief introduction of the Korea Printed Electronics Association (KoPEA).

  • PDF

Optimization Analysis of Flexible Cellular Manufacturing: Route Selection and Determining the Optimal Production Conditions for Ordered Products (유연한 셀생산을 위한 최적가공경로와 생산조건의 결정)

  • Song, Sang-Jae;Choi, Jung-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.47-62
    • /
    • 1992
  • This paper describes a procedure for optimizing the route selection and production conditions in alternate process plans under a cellular manufacturing environment. The type of production is mainly production-to-order which deals with unexpected products as the changes factor. The flexible cellular manufacturing can be viewed as a complete unification of both flexible manufacturing process and flexible production management. The integrated problem for designing flexible cellular manufacturing associated with determining the optimal values of the machining speeds, overtime, and intercell flow is formulated as Nonlinear Mixed Integer Programming(NMIP) in order to minimize total production change cost. This is achieved by introducing the marginal cost analysis into the NMIP, which will compute the optimal machining speed, overtime, intercell flow, and routing. The application of this procedure offers greater flexibility to take advantage of the cellular manufacturing due to the optimum use of resources. A solution procedure for this problem was developed and a numerical example is included.

  • PDF

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

Continuous Roll-to-Roll(R2R) sputtering system for growing flexible and transparent conducting oxide electrode at room temperature

  • Park, Yong-Seok;Jeong, Jin-A;Park, Ho-Kyun;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1575-1577
    • /
    • 2009
  • We have investigated the characteristics of transparent indium zinc oxide(IZO)/Ag/IZO multilayer electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible device are described. By the continuous R2R sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, we were able to fabricate an IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ${\Omega}$/square, optical transmittance of 87.4 %, and figure of merit value of 42.03 10-3 ${\Omega}$-1. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the RTR sputter grown single ITO electrode, due to the existence a ductile Ag layer between the IZO layers. This indicates that the RTR sputtered IZO-Ag-IZO multilayer is a promising flexible electrode that can substitute for the conventional single ITO electrode grown by bath type sputtering for use in low cost flexible device, due to its low resistance, high transparency, superior flexibility and fast preparation by the R2R process.

  • PDF

Characteristics of Carbon Nanotube Anode for flexible displays and characteristics of OLEDs fabricated on Carbon Nanotube Anode (플렉시블 디스플레이용 CNT 애노드 특성 및 이를 이용하여 제작한 플렉시블 OLED 특성 분석)

  • Kim, Han-Ki;Jung, Jin-A;Moon, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.416-417
    • /
    • 2007
  • We prepared flexible transparent conducting electrodes by spray coating of single-walled carbon nanotube (SWNT) networks on PET substrate and have demonstrated their use as transparent anodes for flexible organic light emitting diodes (OLEDs). The flexible CNT electrode produced by spray coating method shows relatively low sheet resistance ($150{\sim}220{\Omega}/sq.$) and high transmittance of ~60% even though it was prepared at room temperature. In addition, CNT electrode/PET sample exhibits little resistance change during 2000 bending cycles, demonstrated good mechanical robustness. Using transparent CNT electrode, it is readily possible to achieve performances comparable to commercial ITO-based OLEDs. This indicates that flexible CNT electrode is alternative anode materials for conventional ITO anode in flexible OLEDs.

  • PDF

Design of Mat Foundation by Simplified Flexible Method Using Regression Analysis (회귀분석을 이용한 단순화된 연성법에 의한 전면기초의 설계)

  • Moon, Kyoungtae;Park, Sangyeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.153-164
    • /
    • 2015
  • The methods of design of mat foundation may be classified as the rigid method and the flexible method according to the assumptions used. In the rigid method, the mat is assumed to be infinitely rigid and the contact pressure is assumed planar distribution. However, the contact pressure is not planar but curved surface because the real mat is not rigid. Therefore, it is not precise to analyze the mat foundation using the rigid method, and so there is no choice but to accept an error. On the other hand, in the flexible method, the mat is considered as the plate on the elastic foundation. This elastic plate theory is for the infinite plate acting a concentrated load on the elastic foundation. However, the functions for the moment, shear, and the deflection by the flexible method are very complex, there are many difficulties for the designer to use them. Also, it is impossible to use the design aid figures as a substitute of the complex functions, because they do not cover the values at the critical sections for the moment and shear. Therefore, in this research, the simplified functions for the moment, shear, and the deflection are proposed by regression analysis for an designer to use easily the flexible method. The simplified functions are very accurate and very ease to use.

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • Park, Ik-Jae;Park, Sang-Baek;Kim, Ju-Seong;Jin, Gyeong-Seok;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF

Ultrafast and flexible UV photodetector based on NiO

  • Kim, Hong-sik;Patel, Malkeshkumar;Kim, Hyunki;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.389.2-389.2
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

A study on electromechanical properties of CNT conductive film deposited on flexible substrate (유연 모재 위에 증착된 CNT 전도성 필름의 전기-기계적 특성에 대한 연구)

  • Song, Sun-Ah;Kim, Jae-Hyun;Lee, Hak-Joo;Song, Jin-Woo;Chang, Won-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.35-39
    • /
    • 2008
  • In this study, electromechanical properties of carbon nanotube (CNT) thin film on flexible substrates were measured using a micro-tensile machine with functionality of simultaneous measurements of displacement, load and electrical resistance. The CNT thin film of about 100 nm thick was deposited on flexible substrates, polyethylene terephthalate (PET) using spraying and ink-jetting techniques. To investigate the effect of process condition on the electromechanical properties of CNT thin film, sets of CNT samples were fabricated under various heat treatments and microwave process. The microstructures of the CNT thin film before and after tensile test were investigated using Scanning Electron Microscope (SEM), and the failure modes of the CNT thin films were identified to understand their electromechanical behaviors and interaction with the flexible substrates. Based on the experimental results, the use of CNT thin film as flexible electrodes and strain gages is discussed.

  • PDF