• Title/Summary/Keyword: flexible sensor

Search Result 490, Processing Time 0.033 seconds

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

Development of Direct Printed Flexible Tactile Sensors

  • Lee, Ju-Kyoung;Lee, Kyung-Chang;Kim, Hyun-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.233-243
    • /
    • 2017
  • This paper proposes a structure of direct-printed flexible tactile-sensor. These flexible tactile sensors are based on pressure-sensing materials that allow pressure to be measured according to resistance change that in turn results from changes in material size because of compressive force. The sensing material consists of a mixture of multi walled carbon nanotubes (MWCNTs) and TangoPlus, which gives it flexibility and elasticity. The tactile sensors used in this study were designed in the form of array structures composed of many lines so that single pressure points can be measured. To evaluate the performance of the flexible tactile sensor, we used specially designed signal-processing electronics and tactile sensors to experimentally verify the sensors' linearity. To test object grasp, tactile sensors were attached to the surface of the fingers of grippers with three degrees of freedom to measure the pressure changes that occur during object grasp. The results of these experiments indicate that the flexible tactile sensor-based robotic gripper can grasp objects and hold them in a stable manner.

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.

Polymer/Metal Based Flexible MEMS Biosensors for Nerve Signal Monitoring and Sensitive Skin

  • Kim, Yong-Ho;Hwang, Eun-Soo;Kim, Yong-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • This paper presents fabrication process and experimental results of two different types of flexible MEMS biosensors based on polymer/metal multilayer processing techniques. One type of a biosensor is a microelectrode array (MEA) for nerve signal monitoring through implanting the MEA into a living body, and another is a tactile sensor capable of being mounted on an arbitrary-shaped surface. The microelectrode array was fabricated and its electrical characteristics have been examined through in vivo and in vitro experiment. For sensitive skin, flexible tactile sensor array was fabricated and its sensitivity has been analyzed. Mechanical flexibility of these biosensors has been achieved by using a polymer, and it is verified by implanting a MEA to an animal and mounting the tactile sensor on an arbitrary-shaped surface.

Flexible tactile sensor for minimally invasive surgery (최소 침습 수술을 위한 유연한 촉각 센서)

  • Lee, Junwoo;Yoo, Yong Kyoung;Han, Sung Il;Kim, Cheon Jing;Lee, Jeong Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1229-1230
    • /
    • 2015
  • Monitoring of mechanical properties of tissues as well as direction/quantities of forces is considered as an essential way for disease diagnosis and haptic feedback systems. There are extensively increasing interests for measuring normal/shear force and touch feelings, especially for surgery systems. Highly sensitive and flexible tactile sensor is needed in palpation for detecting cancer cyst as well as real time pressure monitoring in minimally invasive surgery (MIS). Importantly, MEMS technique with miniaturized fabrication technique is essential for the on-chip integration with biopsy and biomedical grasper. Here, we propose the flexible tactile sensor with high sensitivity based on piezoresistive effect. We analyzed the sensitivity according to the pressure and directions and showed the ability of discrimination of the different materials surfaces, illustrating the feasibility of the flexible tactile sensor for biomedical grasper by mimicking human skin.

  • PDF

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity

  • Jung, Young;Cho, Hanchul
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.145-150
    • /
    • 2022
  • The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.

Development of Flexible Tactile Sensor Array

  • Kim, Hyungtae;Kwangmok Jung;Lee, Kyungsub;Jaedo Nam;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.6-97
    • /
    • 2002
  • In this paper, we present an arrayed flexible tactile sensor, which can detect contact normal forces as well as positions. The tactile sensor is developed using Polyvinylidene Fluoride (PVDF) that is known as piezoelectric polymer, and the surface electrode is fabricated using silk-screening technique with silver. We develop a charge amplifier in order to amplify the small signal from the sensor, and a fast signal processing unit by using a DSP chip. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In the future, the developed sensor is applied to a dexterous robotic hand...$\textbullet$ Tactile sensing, PVDF, Robot hand

  • PDF

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.