• Title/Summary/Keyword: flat membrane

Search Result 176, Processing Time 0.024 seconds

Enhanced Hydrophilicity of Polyethersulfone Membrane by Various Surface Modification Methods (다양한 표면개질을 이용한 폴리에테르설폰 막의 친수성 향상)

  • Park, So Jung;Hwang, Jun Seok;Choi, Won-Kil;Lee, Hyung Keun;Huh, Kang Moo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.205-212
    • /
    • 2014
  • Polyethersulfone (PES) membranes were modified by various physico-chemical modification methods to enhance the surface hydrophilicity for application as a separation membrane to separate and collect water vapor from the flue gas. Homogeneous PES flat-sheet membranes were prepared and modified by acid treatment, blending and plasma treatment for hydrophilic surface modification. The surface characteristics of the modified PES membranes were evaluated by ATR-FTIR, XPS, SEM and contact angle measurements. No significant change in hydrophilicity was observed for the PES membranes modified by acid treatment with sulfuric acid or blending with various compositions of poloxamer as an amphiphilic PEO-PPO-PEO tri-block copolymer. On the other hand, Ar plasma treatment led to a significant increase in the hydrophilicity of the surface, depending on the plasma treatment time. As a result, the PES membrane could be the most efficiently surface-treated by applying the plasma treatment for enhancing their surface hydrophilicity.

Effect of Operating Conditions and Recovery of Water Back-washing in Spiral Wound Microfiltration Module Manufactured with PVDF Nanofibers for Water Treatment (수처리용 PVDF 나노섬유 나권형 정밀여과 모듈에서 운전조건의 영향과 물 역세척 회복)

  • Kyung, Kyu Myung;Park, Jin Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.180-190
    • /
    • 2015
  • PVDF (polyvinylidene fluoride) nanofiber has the advantages such as excellent strength, chemical resistance, nontoxic, non-combustibility. Flat membranes with 0.3 and $0.4{\mu}m$ pore size respectively, were manufactured by PVDF nanofiber, and then each spiral wound module was prepared with them. A woven paper was not included in preparing the module with $0.3{\mu}m$ pore size; however, it was included the module with $0.4{\mu}m$ pore size. The permeate fluxes and rejection rates of the two modules were compared using pure water and simulation solution including kaolin and humic acid. The recovery rate and filtration resistance were calculated after water back-washing. In addition, the effect of flow rate and trans-membrane pressure on treatment efficiency and filtration resistance were investigated for the spiral wound module with $0.4{\mu}m$ pore size.

Modeling Study on a Circulatory Hollow-Fiber Membrane Absorber for $CO_{2}$ Separation (이산화탄소 분리를 위한 순환식 중공사 막흡수기에 관한 모델링 연구)

  • Chun, Myung-Suk;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • For several years lots of attempts have been made to establish the liquid membrane-based techniques for separations of gas mixtures especially containing carbon dioxide. A more effective system to separate $CO_{2}$ from flue gases, a circulatory hollow-fiber membrane absorber(HFMA) consisting of absorption and desorption modules with vacuum mode, has been considered in this study. Gas-liquid mass transfer has been modeled on a membrane module with non-wetted hollow-fibers in the laminar flow regime. The influence of an absorbent flow rate on the separation performance of the circulatory HFMA can be predicted quantitatively by obtaining the $CO_{2}$ concentration profile in a tube side. The system of $CO_{2}/N_{2}$ binary gas mixture has been studied using pure water as an(inert) absorbent. As the absorbent flow rate is increased, the permeation flux(i.e., defined as permeation rate/membrane contact area) also increases. The enhanced selectivity compared to the previous results, on the other hand, shows the decreasing behavior. It has been found obviously that the permeation flux depends on the variations of pressure in gas phase of desorption module. From an accurate comparison with the results of conventional flat sheet membrane module, the advantageous permeability of this circulatory HFMA can be clearly ascertained as expected. Our efforts to the theoretical model will provide the basic analysis on the circulatory HFMA technique for a better design and process.

  • PDF

Anisotropic etching characteristics of single crystal silicon by KOH and KOH-IPA solutions (KOH 용액 및 KOH-IPA 혼합용액에 의한 단결정 실리콘의 이방성식각 특성)

  • 조남인;천인호
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.249-255
    • /
    • 2002
  • For a formation of membrane structures, single crystal silicon wafers have been anisotropically etched with solutions of KOH and KOH-IPA. The etching rate was observed to be strongly dependent upon the etchant temperature and concentration. Mask patterns for the etching experiment was aligned to incline $45^{\circ}$on the primary flat of the silicon wafer. The different etching characteristics were observed according to pattern directions and etchant concentration. When the KOH concentration was fixed to 20 wt%, the U-groove etching shape was observed for the etching temperature of above $80^{\circ}C$, and V-groove shapes observed at below $80^{\circ}C$. Hillocks, which were generated at the etched silicon surfaces, has been decreased as the increasing of the etchant temperature and concentration.

Two Newly Recorded Ciliates, Oxytricha longigranulosa and o. marina (Ciliophora: Spirotrichea: Sporadotrichida) from Korea

  • Kwon, Choon-Bong;Shin, Mann-Kyoon
    • Animal Systematics, Evolution and Diversity
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2008
  • Two oxytrichid ciliates collected from the mosses and estuarine littoral in Korea were identified as Oxytricha longigranulosa Berger and Foissner, 1989 and O. marina Kahl, 1932. These species are reported for the first time from Korea. The description was based on living and protargol impregnated specimens. Diagnostic characters for each species are as follows. Oxytricha longigranulosa: Cell in vivo $80-115{\times}30-50{\mu}m$, mostly $90{\times}40{\mu}m$. Length/width ratio about 2.4/1. Cortical granules about $1{\times}1.5{\mu}m$ in size, colorless, arranged in short and discontinued longitudinal rows. Four frontoventral cirri. Adoral zone of membrane lies (AZM) covering 30-50% of cell length with 25-27 adoral membranelles (AM). Buccal area flat, typical Oxytricha pattern. Five transverse cirri, 19-23 right marginal cirri, 19-24 left marginal cirri, three caudal cirri, five dorsal kineties. Two macronuclear nodules 2 in number and spherical in shape, two micronuclei in number. Oxytricha marina: Cell in vivo $100-150{\times}30-60{\mu}m$. Cytoplasm colorless without cortical granules. Four frontoventral cirri. AZM covering 50% of cell length with 28-44 AMs, Buccal area flat, typical Oxytricha pattern. Five transverse cirri, 23-38 right marginal cirri, 19-25 left marginal cirri, three caudal cirri, five dorsal kineties. Two macronuclear nodules and spherical in shape, 1-5 micronuclei, mostly two in number.

Cytologic Features of Papillary Immature Metaplasia of Uterine Cervix (유두상 미성숙 화생의 자궁경부 세포진 소견)

  • Kim, Hye-Sun;Seon, Mee-Im;Kim, Yee-Jung;Kim, Hy-Sook
    • The Korean Journal of Cytopathology
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Papillary immature metaplasia (PIM) of the uterine cervix (Immature condyloma) is a subset of low grade squamous intraepithelial lesion (LSIL) which is frequently associated with human papilloma virus (HPV) types 6 and 11. The histologic features of PIM include filiform papillae lined by evenly spaced immature metaplastic-type cells with frequent nucleoli, mild anisokaryosis, and a low mitotic index. To characterize the cytologic changes associated with PIM, we analyzed 14 cases of PIM from our file. We reviewed biopsy slides and the cervicovaginal smears taken proximate to the time of blopsy. Histologically, nine cases had either flat condyloma (7 cases) or high grade squamous intraepithelial lesion (HSIL) (2 cases). Cytologic changes included cells in various stages of maturation with karyomegaly (14 cases), cells with irregularities in the nuclear membrane (13 cases), intermediate cells with karyomegaly(13 cases), cells with binucleatlon (13 cases), and aborted koliocytes (11 cases) Cervicovaginal smears from all cases were interpreted as atypical squamous cells of undetermined significance (ASCUS), NOS or ASCUS, rule out squamous intraepithelial lesion (SIL) or LSIL in two cases with flat condyloma or HSIL in a case with severe dysplasia. PIM is a distinct histologic entity that can present with a spectrum of cytologic findings, but cytologic findings may resemble variable reactive conditions and immature HSIL. Therefore, it is difficult to diagnose PIM by cytology alone. However, the meticulous efforts for making the cytologic diagnoses which can Induce active management of patients are recommended because PIM is a variant of LSIL and frequently has a flat condyloma or HSIL.

Fabrication of the alumina membrane with nano-sized pore array using the thin film aluminum (박막 알루미늄을 이용한 나노미터 크기의 미세기공 형성)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Lee, Eui-Sik;Kim, Chang-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.120-122
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using thin film aluminum deposited on silicon wafer was fabricated. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2M was used for low voltage anodization under 100V, the chromic acid with 0.1M was used for high voltage anodization over 100V. The nano-sized pores with diameter of 60~120nm was obtained by low voltage anodization of 40~90V and those of 200~300nm was obtained by high voltage anodization of 120~160V. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano-structure.

  • PDF

Evaluation to Purification Capacity of Pollutants by Column Test with the tidal flat sediment (통수실험에 의한 갯벌의 오염물질 정화능력 평가)

  • Kim, Jong-Gu;You, Sun-Jae
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.223-228
    • /
    • 2000
  • The purpose of this study is to evaluate the purification capacity of pollutants by column test with the tidal flat sediment. Sediment materials were taken from Chunjangdae tidal flat which located in Chungnam Seochungun. The column tests were conducted on four conditions(R1 : raw sewage filtered by G2 filter, R2 : sterilized sewage after filtered by GF/C filter, R3 : R2 /filtered(membrane) seawater (1:1), R4 : R2 /filtered(membrane) seawater(1:2)). The results of this study may be summarized as followed ; The removed COD by column tests were increased according to increasing the quantity of sewage. During the column tests of 580min, the total removed ammonia nitrogen were 90.1mg for R1, 81.0mg for R2, 27.6mg for R3 and 4.1mg for R4. The result was similar to COD experiment. During the 580min, the total removed total-phosphates were 3.4mg for R1, 4.2mg for R2, 5.6mg for R3 and 2.0mg for R4. The removal efficiency of Pb and Cd for R3 and R4 reactor were higher than R1 and R2 reactor. The remove of heavy metal by the column test was high in sample with seawater. But in the initial 20min, the adsorbed Pb and Cd showed about 3% of the total adsorbed Pb and Cd during 580min.

  • PDF

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Preparation and Characterization of PSF Membranes by Phosphoric Acid and 2-Butoxyethanol (인산 및 2-부톡시에탄올 첨가에 의한 PSF 고분자 분리막의 제조 및 특성)

  • Kim, Nowon
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.178-190
    • /
    • 2012
  • Flat sheet membranes were prepared with polysulfone (PSF) by an immersion precipitation phase inversion method. Membranes were prepared with PSF/N-methylpyrrolidone (NMP)/polyvinylpyrrolidone (PVP)/phosphoric acid casting solution and water coagulant. By using the successive process of the vapor-induced phase inversion (VIPS) followed by the nonsolvent-induced phase inversion (NIPS), the effect of phosphoric acid addition to casting solution on morphology and permeability of membrane was studied. The mean pore size, the porosity, and the water flux of membranes were increased by the addition of small amount of phosphoric acid. Furthermore, the morphology of the prepared membranes were changed from a dense sponge-like structure to highly enhanced asymmetric structure. PSF/NMP/PVP/phosphoric acid/2-butoxyethanol (BE) casting solution were prepared and cast the successive VIPS-NIPS process with same experimental condition. Due to the addition of BE to casting solution, the mean pore size and almost 0.1 ${\mu}m$ and the water flux increased about 10 to 12 $L/cm^2{\cdot}min{\cdot}bar$.