DOI QR코드

DOI QR Code

Enhanced Hydrophilicity of Polyethersulfone Membrane by Various Surface Modification Methods

다양한 표면개질을 이용한 폴리에테르설폰 막의 친수성 향상

  • Park, So Jung (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Hwang, Jun Seok (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Choi, Won-Kil (Korea Institute of Energy Research) ;
  • Lee, Hyung Keun (Korea Institute of Energy Research) ;
  • Huh, Kang Moo (Department of Polymer Science and Engineering, Chungnam National University)
  • Received : 2013.10.20
  • Accepted : 2013.12.10
  • Published : 2014.03.25

Abstract

Polyethersulfone (PES) membranes were modified by various physico-chemical modification methods to enhance the surface hydrophilicity for application as a separation membrane to separate and collect water vapor from the flue gas. Homogeneous PES flat-sheet membranes were prepared and modified by acid treatment, blending and plasma treatment for hydrophilic surface modification. The surface characteristics of the modified PES membranes were evaluated by ATR-FTIR, XPS, SEM and contact angle measurements. No significant change in hydrophilicity was observed for the PES membranes modified by acid treatment with sulfuric acid or blending with various compositions of poloxamer as an amphiphilic PEO-PPO-PEO tri-block copolymer. On the other hand, Ar plasma treatment led to a significant increase in the hydrophilicity of the surface, depending on the plasma treatment time. As a result, the PES membrane could be the most efficiently surface-treated by applying the plasma treatment for enhancing their surface hydrophilicity.

본 연구에서는 폴리에테르설폰(polyethersulfone, PES)을 연소배가스에 포함된 수증기를 분리 및 회수하기 위한 고분자 분리막 소재로 사용하기 위해 다양한 물리 화학적 표면개질 방법을 사용하여 PES 평막 표면의 친수성을 향상시키고자 하였다. 균일한 PES 평막을 제조한 후 친수성 향상을 위한 개질 방법으로 산처리, 블렌딩 및 플라즈마 처리를 통해 표면개질을 하였고, 표면 특성을 비교하였다. PES 평막 표면의 특성 변화는 ATR-FTIR, XPS, SEM 및 접촉각 측정을 통해 관찰하였다. 황산을 이용한 산처리 방법과 양친매성 고분자를 이용한 블렌딩 방법에 의해 개질된 PES 평막에서는 접촉각의 변화가 크지 않았다. Ar 플라즈마 처리를 한 경우, 플라스마 처리 시간이 증가함에 따라 PES 표면의 친수성이 크게 증가하는 것을 확인할 수 있었다. 본 결과를 통해 다양한 표면개질 방법 중 플라즈마 방법을 적용하여 PES 표면을 처리하는 것이 PES 막 표면의 친수성 향상에 가장 효과적임을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국에너지기술연구원

References

  1. I. S. Kim and B. S. Oh, J. Environ. Sci., 30, 12 (2008).
  2. J. J. Hee, S. H. Jang, and Y. I. Choi, J. Environ. Sci., 20, 767 (2011).
  3. S. H. Han, H. B. Park, and Y. M. Lee, Polym. Sci. Tech., 19, 4 (2008).
  4. K. H. Song, K. H. Kim, S. H. Cho, K. R. Lee, J. H. Lim, and S. S. Bae, Korean Chem. Eng. Res., 42, 59 (2004).
  5. J. K. Shim, H. S. Na, Y. M. Lee, H. Huh, and Y. C. Nho, J. Membr. Sci., 190, 215 (2001). https://doi.org/10.1016/S0376-7388(01)00445-8
  6. H. Sijbesma, K. Nymeijer, R. V. Marwijk, R. Heijboer, J. Potreck, and M. Wessling, J. Membr. Sci., 313, 263 (2008). https://doi.org/10.1016/j.memsci.2008.01.024
  7. D. G. Jyun, Y. I. Park, and K. H. Lee, J. Korean Ind. Eng. Chem., 11, 34 (2000).
  8. Y. I. Park and K. H. Lee, Energy. Con. Mant., 36, 423 (1995). https://doi.org/10.1016/0196-8904(95)00035-C
  9. H. Y. Choi, T. S. Lee, J. Lee, and S. G. Lee, J. Adhe. Inter., 12, 1 (2011).
  10. J. H. Kim, H. J. Joo, S. Y. Song, K. Y. Choi, and D. J. Byun, J. Adhe. Inter., 6, 3 (2005).
  11. A. S. Vanconcellos, A. P. Oliveira, and R. Baumhardt-Neto, Eur. Polym. J., 33, 1731 (1997). https://doi.org/10.1016/S0014-3057(97)00049-9
  12. D. S. Bag, V. P. Kumar, and S. Maiti, J. Appl. Polym. Sci., 71, 1041 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1041::AID-APP1>3.0.CO;2-R
  13. H. Wang, S. J. Chen, and J. Zhang, Colloid Polym. Sci., 287, 541 (2009) https://doi.org/10.1007/s00396-009-2000-9
  14. D. S. Bag, S. N. Ghosh, and S. Maiti, Eur. Polym. J., 34, 855 (1998). https://doi.org/10.1016/S0014-3057(97)00178-X
  15. W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning, and Z. Jiang, J. Membr. Sci., 318, 405 (2008). https://doi.org/10.1016/j.memsci.2008.03.013
  16. W. Chen, J. Peng, Y. Su, L. Zheng, L. Wang, and Z. Jiang, Sepa. Purif. Tech., 66, 591 (2009). https://doi.org/10.1016/j.seppur.2009.01.009
  17. D. H. Sim and S. D. Seul, Polymer(Korea), 32, 433 (2008).
  18. K. C. Nam, S. W. Myung, and H. S. Choi, J. Adhes. Inter., 6, 3 (2005).
  19. J. I. Weon and S. Y. Lee, Polymer(Korea), 36, 461 (2012).
  20. C. Q. Tran and H. S. Choi, Korean Chem. Eng. Res., 49, 271 (2011). https://doi.org/10.9713/kcer.2011.49.3.271
  21. H. L. Park, J. M. Lim, S. D. Seul, W. N. Lee, and J. B. Moon, J. KOSOS, 20, 1 (2005).
  22. H. J. Park, S. H. Noh, S. Y. Bae, and S. K. Moon, HWAHAK KONGHAK, 40, 6 (2002).
  23. J. W. Kim and H. S. Choi, J. Korean Ind. Eng. Chem., 12, 154 (2001).
  24. H. H. Son and W. G. Lee, Appl. Chem. Eng., 22, 261 (2011).
  25. D. S. Won, T. K. Kim, and W. G. Lee, Appl. Chem. Eng., 21, 98 (2010).
  26. B. Van der Bruggen, J. Appl. Polym. Sci., 114, 630 (2009). https://doi.org/10.1002/app.30578
  27. J. F. Blanco, Q. T. Nguyen, and P. Schaetzel, J. Membr. Sci., 186, 267 (2001). https://doi.org/10.1016/S0376-7388(01)00331-3
  28. D. S. Wavhal and E. R. Fisher, J. Membr. Sci., 209, 255 (2002). https://doi.org/10.1016/S0376-7388(02)00352-6
  29. J. S. Jung, X. Liu, and H. S. Choi, Korean Chem. Eng. Res., 47, 59 (2009).
  30. D. H. Sim, S. D. Seul, and S. T. Oh, J. Adhes. Inter., 8, 3 (2007).
  31. C. C. Park and C. Y. Park, Elastomer, 35, 296 (2000).